Sparse Methods for Vector Embeddings of TPC Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.11221
Time Projection Chambers (TPCs) are versatile detectors that reconstruct charged-particle tracks in an ionizing medium, enabling sensitive measurements across a wide range of nuclear physics experiments. We explore sparse convolutional networks for representation learning on TPC data, finding that a sparse ResNet architecture, even with randomly set weights, provides useful structured vector embeddings of events. Pre-training this architecture on a simple physics-motivated binary classification task further improves the embedding quality. Using data from the GAseous Detector with GErmanium Tagging (GADGET) II TPC, a detector optimized for measuring low-energy $β$-delayed particle decays, we represent raw pad-level signals as sparse tensors, train Minkowski Engine ResNet models, and probe the resulting event-level embeddings which reveal rich event structure. As a cross-detector test, we embed data from the Active-Target TPC (AT-TPC) -- a detector designed for nuclear reaction studies in inverse kinematics -- using the same encoder. We find that even an untrained sparse ResNet model provides useful embeddings of AT-TPC data, and we observe improvements when the model is trained on GADGET data. Together, these results highlight the potential of sparse convolutional techniques as a general tool for representation learning in diverse TPC experiments.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.11221
- https://arxiv.org/pdf/2511.11221
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416343959
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416343959Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.11221Digital Object Identifier
- Title
-
Sparse Methods for Vector Embeddings of TPC DataWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
T. Wheeler, Raghuram Ramanujan, Connor L. Cross, Hoi Yan Ian Heung, Andrew R. JonesList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.11221Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.11221Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.11221Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416343959 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.11221 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.11221 |
| ids.openalex | https://openalex.org/W4416343959 |
| fwci | |
| type | preprint |
| title | Sparse Methods for Vector Embeddings of TPC Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.11221 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.11221 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.11221 |
| locations[1].id | doi:10.48550/arxiv.2511.11221 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.11221 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5038304278 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | T. Wheeler |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wheeler, Tyler |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007877912 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-3476-3379 |
| authorships[1].author.display_name | Raghuram Ramanujan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ramanujan, Raghuram |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111449401 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Connor L. Cross |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cross, Connor L. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5120362210 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hoi Yan Ian Heung |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Heung, Hoi Yan Ian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073268875 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6118-9327 |
| authorships[4].author.display_name | Andrew R. Jones |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jones, Andrew J. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.11221 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-18T00:00:00 |
| display_name | Sparse Methods for Vector Embeddings of TPC Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T11:45:13.631836 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.11221 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.11221 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.11221 |
| primary_location.id | pmh:oai:arXiv.org:2511.11221 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.11221 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.11221 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 39, 59, 82, 116, 128, 181 |
| abstract_inverted_index.-- | 127, 138 |
| abstract_inverted_index.As | 115 |
| abstract_inverted_index.II | 80 |
| abstract_inverted_index.We | 26, 143 |
| abstract_inverted_index.an | 12, 147 |
| abstract_inverted_index.as | 96, 180 |
| abstract_inverted_index.in | 11, 135, 187 |
| abstract_inverted_index.is | 165 |
| abstract_inverted_index.of | 22, 53, 155, 176 |
| abstract_inverted_index.on | 34, 58, 167 |
| abstract_inverted_index.we | 91, 119, 159 |
| abstract_inverted_index.TPC | 35, 125, 189 |
| abstract_inverted_index.and | 104, 158 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 31, 85, 131, 184 |
| abstract_inverted_index.raw | 93 |
| abstract_inverted_index.set | 46 |
| abstract_inverted_index.the | 67, 73, 106, 123, 140, 163, 174 |
| abstract_inverted_index.TPC, | 81 |
| abstract_inverted_index.Time | 0 |
| abstract_inverted_index.data | 71, 121 |
| abstract_inverted_index.even | 43, 146 |
| abstract_inverted_index.find | 144 |
| abstract_inverted_index.from | 72, 122 |
| abstract_inverted_index.rich | 112 |
| abstract_inverted_index.same | 141 |
| abstract_inverted_index.task | 64 |
| abstract_inverted_index.that | 7, 38, 145 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.tool | 183 |
| abstract_inverted_index.when | 162 |
| abstract_inverted_index.wide | 20 |
| abstract_inverted_index.with | 44, 76 |
| abstract_inverted_index.Using | 70 |
| abstract_inverted_index.data, | 36, 157 |
| abstract_inverted_index.data. | 169 |
| abstract_inverted_index.embed | 120 |
| abstract_inverted_index.event | 113 |
| abstract_inverted_index.model | 151, 164 |
| abstract_inverted_index.probe | 105 |
| abstract_inverted_index.range | 21 |
| abstract_inverted_index.test, | 118 |
| abstract_inverted_index.these | 171 |
| abstract_inverted_index.train | 99 |
| abstract_inverted_index.using | 139 |
| abstract_inverted_index.which | 110 |
| abstract_inverted_index.(TPCs) | 3 |
| abstract_inverted_index.AT-TPC | 156 |
| abstract_inverted_index.Engine | 101 |
| abstract_inverted_index.GADGET | 168 |
| abstract_inverted_index.ResNet | 41, 102, 150 |
| abstract_inverted_index.across | 18 |
| abstract_inverted_index.binary | 62 |
| abstract_inverted_index.reveal | 111 |
| abstract_inverted_index.simple | 60 |
| abstract_inverted_index.sparse | 28, 40, 97, 149, 177 |
| abstract_inverted_index.tracks | 10 |
| abstract_inverted_index.useful | 49, 153 |
| abstract_inverted_index.vector | 51 |
| abstract_inverted_index.GAseous | 74 |
| abstract_inverted_index.Tagging | 78 |
| abstract_inverted_index.decays, | 90 |
| abstract_inverted_index.diverse | 188 |
| abstract_inverted_index.events. | 54 |
| abstract_inverted_index.explore | 27 |
| abstract_inverted_index.finding | 37 |
| abstract_inverted_index.further | 65 |
| abstract_inverted_index.general | 182 |
| abstract_inverted_index.inverse | 136 |
| abstract_inverted_index.medium, | 14 |
| abstract_inverted_index.models, | 103 |
| abstract_inverted_index.nuclear | 23, 132 |
| abstract_inverted_index.observe | 160 |
| abstract_inverted_index.physics | 24 |
| abstract_inverted_index.results | 172 |
| abstract_inverted_index.signals | 95 |
| abstract_inverted_index.studies | 134 |
| abstract_inverted_index.trained | 166 |
| abstract_inverted_index.(AT-TPC) | 126 |
| abstract_inverted_index.(GADGET) | 79 |
| abstract_inverted_index.Chambers | 2 |
| abstract_inverted_index.Detector | 75 |
| abstract_inverted_index.designed | 130 |
| abstract_inverted_index.detector | 83, 129 |
| abstract_inverted_index.enabling | 15 |
| abstract_inverted_index.encoder. | 142 |
| abstract_inverted_index.improves | 66 |
| abstract_inverted_index.ionizing | 13 |
| abstract_inverted_index.learning | 33, 186 |
| abstract_inverted_index.networks | 30 |
| abstract_inverted_index.particle | 89 |
| abstract_inverted_index.provides | 48, 152 |
| abstract_inverted_index.quality. | 69 |
| abstract_inverted_index.randomly | 45 |
| abstract_inverted_index.reaction | 133 |
| abstract_inverted_index.tensors, | 98 |
| abstract_inverted_index.weights, | 47 |
| abstract_inverted_index.GErmanium | 77 |
| abstract_inverted_index.Minkowski | 100 |
| abstract_inverted_index.Together, | 170 |
| abstract_inverted_index.detectors | 6 |
| abstract_inverted_index.embedding | 68 |
| abstract_inverted_index.highlight | 173 |
| abstract_inverted_index.measuring | 86 |
| abstract_inverted_index.optimized | 84 |
| abstract_inverted_index.pad-level | 94 |
| abstract_inverted_index.potential | 175 |
| abstract_inverted_index.represent | 92 |
| abstract_inverted_index.resulting | 107 |
| abstract_inverted_index.sensitive | 16 |
| abstract_inverted_index.untrained | 148 |
| abstract_inverted_index.versatile | 5 |
| abstract_inverted_index.Projection | 1 |
| abstract_inverted_index.embeddings | 52, 109, 154 |
| abstract_inverted_index.kinematics | 137 |
| abstract_inverted_index.low-energy | 87 |
| abstract_inverted_index.structure. | 114 |
| abstract_inverted_index.structured | 50 |
| abstract_inverted_index.techniques | 179 |
| abstract_inverted_index.event-level | 108 |
| abstract_inverted_index.reconstruct | 8 |
| abstract_inverted_index.$β$-delayed | 88 |
| abstract_inverted_index.Pre-training | 55 |
| abstract_inverted_index.architecture | 57 |
| abstract_inverted_index.experiments. | 25, 190 |
| abstract_inverted_index.improvements | 161 |
| abstract_inverted_index.measurements | 17 |
| abstract_inverted_index.Active-Target | 124 |
| abstract_inverted_index.architecture, | 42 |
| abstract_inverted_index.convolutional | 29, 178 |
| abstract_inverted_index.classification | 63 |
| abstract_inverted_index.cross-detector | 117 |
| abstract_inverted_index.representation | 32, 185 |
| abstract_inverted_index.charged-particle | 9 |
| abstract_inverted_index.physics-motivated | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |