Sparse Orthogonal Parameters Tuning for Continual Learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.02813
Continual learning methods based on pre-trained models (PTM) have recently gained attention which adapt to successive downstream tasks without catastrophic forgetting. These methods typically refrain from updating the pre-trained parameters and instead employ additional adapters, prompts, and classifiers. In this paper, we from a novel perspective investigate the benefit of sparse orthogonal parameters for continual learning. We found that merging sparse orthogonality of models learned from multiple streaming tasks has great potential in addressing catastrophic forgetting. Leveraging this insight, we propose a novel yet effective method called SoTU (Sparse Orthogonal Parameters TUning). We hypothesize that the effectiveness of SoTU lies in the transformation of knowledge learned from multiple domains into the fusion of orthogonal delta parameters. Experimental evaluations on diverse CL benchmarks demonstrate the effectiveness of the proposed approach. Notably, SoTU achieves optimal feature representation for streaming data without necessitating complex classifier designs, making it a Plug-and-Play solution.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.02813
- https://arxiv.org/pdf/2411.02813
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404403735
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404403735Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.02813Digital Object Identifier
- Title
-
Sparse Orthogonal Parameters Tuning for Continual LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-05Full publication date if available
- Authors
-
Kun-Peng Ning, Huai-Jhan Ke, Yuyang Liu, Jiayu Yao, Yonghong Tian, Yuan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.02813Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.02813Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.02813Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404403735 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.02813 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.02813 |
| ids.openalex | https://openalex.org/W4404403735 |
| fwci | |
| type | preprint |
| title | Sparse Orthogonal Parameters Tuning for Continual Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11609 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9689000248908997 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Geophysical Methods and Applications |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9458000063896179 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T11038 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9118000268936157 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Advanced SAR Imaging Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.48182931542396545 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.42174673080444336 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C192562407 |
| concepts[2].level | 0 |
| concepts[2].score | 0.32536208629608154 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[2].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.48182931542396545 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.42174673080444336 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/materials-science |
| keywords[2].score | 0.32536208629608154 |
| keywords[2].display_name | Materials science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.02813 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.02813 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.02813 |
| locations[1].id | doi:10.48550/arxiv.2411.02813 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.02813 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5056432762 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8249-9911 |
| authorships[0].author.display_name | Kun-Peng Ning |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ning, Kun-Peng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108901026 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Huai-Jhan Ke |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ke, Hai-Jian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100373457 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0808-0047 |
| authorships[2].author.display_name | Yuyang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Yu-Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101756521 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6242-9388 |
| authorships[3].author.display_name | Jiayu Yao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yao, Jia-Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100813706 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yonghong Tian |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tian, Yong-Hong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100409827 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3600-3118 |
| authorships[5].author.display_name | Yuan Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yuan, Li |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.02813 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-16T00:00:00 |
| display_name | Sparse Orthogonal Parameters Tuning for Continual Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11609 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9689000248908997 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Geophysical Methods and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2016187641, https://openalex.org/W2805339068, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W2898370298, https://openalex.org/W2137437058, https://openalex.org/W4390401159 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.02813 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.02813 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.02813 |
| primary_location.id | pmh:oai:arXiv.org:2411.02813 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.02813 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.02813 |
| publication_date | 2024-11-05 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 43, 81, 145 |
| abstract_inverted_index.CL | 120 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.We | 56, 92 |
| abstract_inverted_index.in | 72, 100 |
| abstract_inverted_index.it | 144 |
| abstract_inverted_index.of | 49, 62, 97, 103, 112, 125 |
| abstract_inverted_index.on | 4, 118 |
| abstract_inverted_index.to | 14 |
| abstract_inverted_index.we | 41, 79 |
| abstract_inverted_index.and | 30, 36 |
| abstract_inverted_index.for | 53, 135 |
| abstract_inverted_index.has | 69 |
| abstract_inverted_index.the | 27, 47, 95, 101, 110, 123, 126 |
| abstract_inverted_index.yet | 83 |
| abstract_inverted_index.SoTU | 87, 98, 130 |
| abstract_inverted_index.data | 137 |
| abstract_inverted_index.from | 25, 42, 65, 106 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.into | 109 |
| abstract_inverted_index.lies | 99 |
| abstract_inverted_index.that | 58, 94 |
| abstract_inverted_index.this | 39, 77 |
| abstract_inverted_index.(PTM) | 7 |
| abstract_inverted_index.These | 21 |
| abstract_inverted_index.adapt | 13 |
| abstract_inverted_index.based | 3 |
| abstract_inverted_index.delta | 114 |
| abstract_inverted_index.found | 57 |
| abstract_inverted_index.great | 70 |
| abstract_inverted_index.novel | 44, 82 |
| abstract_inverted_index.tasks | 17, 68 |
| abstract_inverted_index.which | 12 |
| abstract_inverted_index.called | 86 |
| abstract_inverted_index.employ | 32 |
| abstract_inverted_index.fusion | 111 |
| abstract_inverted_index.gained | 10 |
| abstract_inverted_index.making | 143 |
| abstract_inverted_index.method | 85 |
| abstract_inverted_index.models | 6, 63 |
| abstract_inverted_index.paper, | 40 |
| abstract_inverted_index.sparse | 50, 60 |
| abstract_inverted_index.(Sparse | 88 |
| abstract_inverted_index.benefit | 48 |
| abstract_inverted_index.complex | 140 |
| abstract_inverted_index.diverse | 119 |
| abstract_inverted_index.domains | 108 |
| abstract_inverted_index.feature | 133 |
| abstract_inverted_index.instead | 31 |
| abstract_inverted_index.learned | 64, 105 |
| abstract_inverted_index.merging | 59 |
| abstract_inverted_index.methods | 2, 22 |
| abstract_inverted_index.optimal | 132 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.refrain | 24 |
| abstract_inverted_index.without | 18, 138 |
| abstract_inverted_index.Notably, | 129 |
| abstract_inverted_index.TUning). | 91 |
| abstract_inverted_index.achieves | 131 |
| abstract_inverted_index.designs, | 142 |
| abstract_inverted_index.insight, | 78 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.multiple | 66, 107 |
| abstract_inverted_index.prompts, | 35 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.recently | 9 |
| abstract_inverted_index.updating | 26 |
| abstract_inverted_index.Continual | 0 |
| abstract_inverted_index.adapters, | 34 |
| abstract_inverted_index.approach. | 128 |
| abstract_inverted_index.attention | 11 |
| abstract_inverted_index.continual | 54 |
| abstract_inverted_index.effective | 84 |
| abstract_inverted_index.knowledge | 104 |
| abstract_inverted_index.learning. | 55 |
| abstract_inverted_index.potential | 71 |
| abstract_inverted_index.solution. | 147 |
| abstract_inverted_index.streaming | 67, 136 |
| abstract_inverted_index.typically | 23 |
| abstract_inverted_index.Leveraging | 76 |
| abstract_inverted_index.Orthogonal | 89 |
| abstract_inverted_index.Parameters | 90 |
| abstract_inverted_index.additional | 33 |
| abstract_inverted_index.addressing | 73 |
| abstract_inverted_index.benchmarks | 121 |
| abstract_inverted_index.classifier | 141 |
| abstract_inverted_index.downstream | 16 |
| abstract_inverted_index.orthogonal | 51, 113 |
| abstract_inverted_index.parameters | 29, 52 |
| abstract_inverted_index.successive | 15 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.evaluations | 117 |
| abstract_inverted_index.forgetting. | 20, 75 |
| abstract_inverted_index.hypothesize | 93 |
| abstract_inverted_index.investigate | 46 |
| abstract_inverted_index.parameters. | 115 |
| abstract_inverted_index.perspective | 45 |
| abstract_inverted_index.pre-trained | 5, 28 |
| abstract_inverted_index.Experimental | 116 |
| abstract_inverted_index.catastrophic | 19, 74 |
| abstract_inverted_index.classifiers. | 37 |
| abstract_inverted_index.Plug-and-Play | 146 |
| abstract_inverted_index.effectiveness | 96, 124 |
| abstract_inverted_index.necessitating | 139 |
| abstract_inverted_index.orthogonality | 61 |
| abstract_inverted_index.representation | 134 |
| abstract_inverted_index.transformation | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |