Sparse Phased Array Optimization Using Deep Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.17073
Antenna arrays are widely used in wireless communication, radar systems, radio astronomy, and military defense to enhance signal strength, directivity, and interference suppression. We introduce a deep learning-based optimization approach that enhances the design of sparse phased arrays by reducing grating lobes. This approach begins by generating sparse array configurations to address the non-convex challenges and extensive degrees of freedom inherent in array design. We use neural networks to approximate the non-convex cost function that estimates the energy ratio between the main and side lobes. This differentiable approximation facilitates cost function minimization through gradient descent, optimizing the antenna elements' coordinates and leading to an improved layout. Additionally, we incorporate a tailored penalty mechanism that includes various physical and design constraints into the optimization process, enhancing its robustness and practical applicability. We demonstrate the effectiveness of our method by applying it to the ten array configurations with the lowest initial costs, achieving further cost reductions ranging from 411% to 643%, with an impressive average improvement of 552%. By significantly reducing side lobe levels in antenna arrays, this breakthrough paves the way for ultra-precise beamforming, enhanced interference mitigation, and next-generation wireless and radar systems with unprecedented efficiency and clarity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.17073
- https://arxiv.org/pdf/2504.17073
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415306808
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415306808Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.17073Digital Object Identifier
- Title
-
Sparse Phased Array Optimization Using Deep LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-23Full publication date if available
- Authors
-
David Lu, Lior Maman, James P. Earls, Amir Boag, Pierre BaldiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.17073Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.17073Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.17073Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415306808 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.17073 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.17073 |
| ids.openalex | https://openalex.org/W4415306808 |
| fwci | |
| type | preprint |
| title | Sparse Phased Array Optimization Using Deep Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11946 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Antenna Design and Optimization |
| topics[1].id | https://openalex.org/T10262 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9961000084877014 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Microwave Engineering and Waveguides |
| topics[2].id | https://openalex.org/T10936 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9818999767303467 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Millimeter-Wave Propagation and Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.17073 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.17073 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.17073 |
| locations[1].id | doi:10.48550/arxiv.2504.17073 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.17073 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084368894 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3263-4476 |
| authorships[0].author.display_name | David Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, David |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5048370243 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lior Maman |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maman, Lior |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043537618 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6343-3661 |
| authorships[2].author.display_name | James P. Earls |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Earls, Jackson |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049540600 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4859-7788 |
| authorships[3].author.display_name | Amir Boag |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Boag, Amir |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103265896 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0636-7930 |
| authorships[4].author.display_name | Pierre Baldi |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Baldi, Pierre |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.17073 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Sparse Phased Array Optimization Using Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11946 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Antenna Design and Optimization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.17073 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.17073 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.17073 |
| primary_location.id | pmh:oai:arXiv.org:2504.17073 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.17073 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.17073 |
| publication_date | 2025-04-23 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 109 |
| abstract_inverted_index.By | 166 |
| abstract_inverted_index.We | 23, 64, 130 |
| abstract_inverted_index.an | 103, 160 |
| abstract_inverted_index.by | 38, 45, 137 |
| abstract_inverted_index.in | 5, 61, 172 |
| abstract_inverted_index.it | 139 |
| abstract_inverted_index.of | 34, 58, 134, 164 |
| abstract_inverted_index.to | 15, 50, 68, 102, 140, 157 |
| abstract_inverted_index.we | 107 |
| abstract_inverted_index.and | 12, 20, 55, 82, 100, 117, 127, 186, 189, 195 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.for | 180 |
| abstract_inverted_index.its | 125 |
| abstract_inverted_index.our | 135 |
| abstract_inverted_index.ten | 142 |
| abstract_inverted_index.the | 32, 52, 70, 76, 80, 96, 121, 132, 141, 146, 178 |
| abstract_inverted_index.use | 65 |
| abstract_inverted_index.way | 179 |
| abstract_inverted_index.411% | 156 |
| abstract_inverted_index.This | 42, 85 |
| abstract_inverted_index.cost | 72, 89, 152 |
| abstract_inverted_index.deep | 26 |
| abstract_inverted_index.from | 155 |
| abstract_inverted_index.into | 120 |
| abstract_inverted_index.lobe | 170 |
| abstract_inverted_index.main | 81 |
| abstract_inverted_index.side | 83, 169 |
| abstract_inverted_index.that | 30, 74, 113 |
| abstract_inverted_index.this | 175 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.with | 145, 159, 192 |
| abstract_inverted_index.552%. | 165 |
| abstract_inverted_index.643%, | 158 |
| abstract_inverted_index.array | 48, 62, 143 |
| abstract_inverted_index.paves | 177 |
| abstract_inverted_index.radar | 8, 190 |
| abstract_inverted_index.radio | 10 |
| abstract_inverted_index.ratio | 78 |
| abstract_inverted_index.arrays | 1, 37 |
| abstract_inverted_index.begins | 44 |
| abstract_inverted_index.costs, | 149 |
| abstract_inverted_index.design | 33, 118 |
| abstract_inverted_index.energy | 77 |
| abstract_inverted_index.levels | 171 |
| abstract_inverted_index.lobes. | 41, 84 |
| abstract_inverted_index.lowest | 147 |
| abstract_inverted_index.method | 136 |
| abstract_inverted_index.neural | 66 |
| abstract_inverted_index.phased | 36 |
| abstract_inverted_index.signal | 17 |
| abstract_inverted_index.sparse | 35, 47 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.Antenna | 0 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.antenna | 97, 173 |
| abstract_inverted_index.arrays, | 174 |
| abstract_inverted_index.average | 162 |
| abstract_inverted_index.between | 79 |
| abstract_inverted_index.defense | 14 |
| abstract_inverted_index.degrees | 57 |
| abstract_inverted_index.design. | 63 |
| abstract_inverted_index.enhance | 16 |
| abstract_inverted_index.freedom | 59 |
| abstract_inverted_index.further | 151 |
| abstract_inverted_index.grating | 40 |
| abstract_inverted_index.initial | 148 |
| abstract_inverted_index.layout. | 105 |
| abstract_inverted_index.leading | 101 |
| abstract_inverted_index.penalty | 111 |
| abstract_inverted_index.ranging | 154 |
| abstract_inverted_index.systems | 191 |
| abstract_inverted_index.through | 92 |
| abstract_inverted_index.various | 115 |
| abstract_inverted_index.applying | 138 |
| abstract_inverted_index.approach | 29, 43 |
| abstract_inverted_index.clarity. | 196 |
| abstract_inverted_index.descent, | 94 |
| abstract_inverted_index.enhanced | 183 |
| abstract_inverted_index.enhances | 31 |
| abstract_inverted_index.function | 73, 90 |
| abstract_inverted_index.gradient | 93 |
| abstract_inverted_index.improved | 104 |
| abstract_inverted_index.includes | 114 |
| abstract_inverted_index.inherent | 60 |
| abstract_inverted_index.military | 13 |
| abstract_inverted_index.networks | 67 |
| abstract_inverted_index.physical | 116 |
| abstract_inverted_index.process, | 123 |
| abstract_inverted_index.reducing | 39, 168 |
| abstract_inverted_index.systems, | 9 |
| abstract_inverted_index.tailored | 110 |
| abstract_inverted_index.wireless | 6, 188 |
| abstract_inverted_index.achieving | 150 |
| abstract_inverted_index.elements' | 98 |
| abstract_inverted_index.enhancing | 124 |
| abstract_inverted_index.estimates | 75 |
| abstract_inverted_index.extensive | 56 |
| abstract_inverted_index.introduce | 24 |
| abstract_inverted_index.mechanism | 112 |
| abstract_inverted_index.practical | 128 |
| abstract_inverted_index.strength, | 18 |
| abstract_inverted_index.astronomy, | 11 |
| abstract_inverted_index.challenges | 54 |
| abstract_inverted_index.efficiency | 194 |
| abstract_inverted_index.generating | 46 |
| abstract_inverted_index.impressive | 161 |
| abstract_inverted_index.non-convex | 53, 71 |
| abstract_inverted_index.optimizing | 95 |
| abstract_inverted_index.reductions | 153 |
| abstract_inverted_index.robustness | 126 |
| abstract_inverted_index.approximate | 69 |
| abstract_inverted_index.constraints | 119 |
| abstract_inverted_index.coordinates | 99 |
| abstract_inverted_index.demonstrate | 131 |
| abstract_inverted_index.facilitates | 88 |
| abstract_inverted_index.improvement | 163 |
| abstract_inverted_index.incorporate | 108 |
| abstract_inverted_index.mitigation, | 185 |
| abstract_inverted_index.beamforming, | 182 |
| abstract_inverted_index.breakthrough | 176 |
| abstract_inverted_index.directivity, | 19 |
| abstract_inverted_index.interference | 21, 184 |
| abstract_inverted_index.minimization | 91 |
| abstract_inverted_index.optimization | 28, 122 |
| abstract_inverted_index.suppression. | 22 |
| abstract_inverted_index.Additionally, | 106 |
| abstract_inverted_index.approximation | 87 |
| abstract_inverted_index.effectiveness | 133 |
| abstract_inverted_index.significantly | 167 |
| abstract_inverted_index.ultra-precise | 181 |
| abstract_inverted_index.unprecedented | 193 |
| abstract_inverted_index.applicability. | 129 |
| abstract_inverted_index.communication, | 7 |
| abstract_inverted_index.configurations | 49, 144 |
| abstract_inverted_index.differentiable | 86 |
| abstract_inverted_index.learning-based | 27 |
| abstract_inverted_index.next-generation | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |