Sparse plus low-rank identification for dynamical latent-variable graphical AR models Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.11320
This paper focuses on the identification of graphical autoregressive models with dynamical latent variables. The dynamical structure of latent variables is described by a matrix polynomial transfer function. Taking account of the sparse interactions between the observed variables and the low-rank property of the latent-variable model, a new sparse plus low-rank optimization problem is formulated to identify the graphical auto-regressive part, which is then handled using the trace approximation and reweighted nuclear norm minimization. Afterwards, the dynamics of latent variables are recovered from low-rank spectral decomposition using the trace norm convex programming method. Simulation examples are used to illustrate the effectiveness of the proposed approach.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.11320
- https://arxiv.org/pdf/2307.11320
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385208439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385208439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.11320Digital Object Identifier
- Title
-
Sparse plus low-rank identification for dynamical latent-variable graphical AR modelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-21Full publication date if available
- Authors
-
Junyao You, Chengpu YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.11320Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.11320Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.11320Direct OA link when available
- Concepts
-
Latent variable, Rank (graph theory), Autoregressive model, Latent variable model, TRACE (psycholinguistics), Algorithm, Mathematics, Graphical model, Computer science, Mathematical optimization, Applied mathematics, Artificial intelligence, Statistics, Combinatorics, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385208439 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.11320 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.11320 |
| ids.openalex | https://openalex.org/W4385208439 |
| fwci | |
| type | preprint |
| title | Sparse plus low-rank identification for dynamical latent-variable graphical AR models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9915000200271606 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T13487 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9750000238418579 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Statistical and numerical algorithms |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9739000201225281 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51167844 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8489968776702881 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[0].display_name | Latent variable |
| concepts[1].id | https://openalex.org/C164226766 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6318707466125488 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[1].display_name | Rank (graph theory) |
| concepts[2].id | https://openalex.org/C159877910 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5991427898406982 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[2].display_name | Autoregressive model |
| concepts[3].id | https://openalex.org/C65965080 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5394338965415955 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1806885 |
| concepts[3].display_name | Latent variable model |
| concepts[4].id | https://openalex.org/C75291252 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5197288990020752 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1315756 |
| concepts[4].display_name | TRACE (psycholinguistics) |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4507834017276764 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4344392716884613 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C155846161 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4258421063423157 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1143367 |
| concepts[7].display_name | Graphical model |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.41719263792037964 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40645813941955566 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C28826006 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37127774953842163 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[10].display_name | Applied mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.25191110372543335 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1589106321334839 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C114614502 |
| concepts[13].level | 1 |
| concepts[13].score | 0.09929350018501282 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[13].display_name | Combinatorics |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/latent-variable |
| keywords[0].score | 0.8489968776702881 |
| keywords[0].display_name | Latent variable |
| keywords[1].id | https://openalex.org/keywords/rank |
| keywords[1].score | 0.6318707466125488 |
| keywords[1].display_name | Rank (graph theory) |
| keywords[2].id | https://openalex.org/keywords/autoregressive-model |
| keywords[2].score | 0.5991427898406982 |
| keywords[2].display_name | Autoregressive model |
| keywords[3].id | https://openalex.org/keywords/latent-variable-model |
| keywords[3].score | 0.5394338965415955 |
| keywords[3].display_name | Latent variable model |
| keywords[4].id | https://openalex.org/keywords/trace |
| keywords[4].score | 0.5197288990020752 |
| keywords[4].display_name | TRACE (psycholinguistics) |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.4507834017276764 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.4344392716884613 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/graphical-model |
| keywords[7].score | 0.4258421063423157 |
| keywords[7].display_name | Graphical model |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.41719263792037964 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.40645813941955566 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/applied-mathematics |
| keywords[10].score | 0.37127774953842163 |
| keywords[10].display_name | Applied mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.25191110372543335 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.1589106321334839 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/combinatorics |
| keywords[13].score | 0.09929350018501282 |
| keywords[13].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.11320 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.11320 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.11320 |
| locations[1].id | doi:10.48550/arxiv.2307.11320 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.11320 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088667596 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Junyao You |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | You, Junyao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018395060 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3466-2876 |
| authorships[1].author.display_name | Chengpu Yu |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yu, Chengpu |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.11320 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-07-25T00:00:00 |
| display_name | Sparse plus low-rank identification for dynamical latent-variable graphical AR models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9915000200271606 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2962930338, https://openalex.org/W4302439501, https://openalex.org/W2461917396, https://openalex.org/W2037497866, https://openalex.org/W4243467573, https://openalex.org/W2106257677, https://openalex.org/W2964321162, https://openalex.org/W1502435251, https://openalex.org/W62001224, https://openalex.org/W3032390039 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.11320 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.11320 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.11320 |
| primary_location.id | pmh:oai:arXiv.org:2307.11320 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.11320 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.11320 |
| publication_date | 2023-07-21 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 46 |
| abstract_inverted_index.by | 22 |
| abstract_inverted_index.is | 20, 53, 62 |
| abstract_inverted_index.of | 6, 17, 30, 42, 77, 101 |
| abstract_inverted_index.on | 3 |
| abstract_inverted_index.to | 55, 97 |
| abstract_inverted_index.The | 14 |
| abstract_inverted_index.and | 38, 69 |
| abstract_inverted_index.are | 80, 95 |
| abstract_inverted_index.new | 47 |
| abstract_inverted_index.the | 4, 31, 35, 39, 43, 57, 66, 75, 87, 99, 102 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.norm | 72, 89 |
| abstract_inverted_index.plus | 49 |
| abstract_inverted_index.then | 63 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.part, | 60 |
| abstract_inverted_index.trace | 67, 88 |
| abstract_inverted_index.using | 65, 86 |
| abstract_inverted_index.which | 61 |
| abstract_inverted_index.Taking | 28 |
| abstract_inverted_index.convex | 90 |
| abstract_inverted_index.latent | 12, 18, 78 |
| abstract_inverted_index.matrix | 24 |
| abstract_inverted_index.model, | 45 |
| abstract_inverted_index.models | 9 |
| abstract_inverted_index.sparse | 32, 48 |
| abstract_inverted_index.account | 29 |
| abstract_inverted_index.between | 34 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.handled | 64 |
| abstract_inverted_index.method. | 92 |
| abstract_inverted_index.nuclear | 71 |
| abstract_inverted_index.problem | 52 |
| abstract_inverted_index.dynamics | 76 |
| abstract_inverted_index.examples | 94 |
| abstract_inverted_index.identify | 56 |
| abstract_inverted_index.low-rank | 40, 50, 83 |
| abstract_inverted_index.observed | 36 |
| abstract_inverted_index.property | 41 |
| abstract_inverted_index.proposed | 103 |
| abstract_inverted_index.spectral | 84 |
| abstract_inverted_index.transfer | 26 |
| abstract_inverted_index.approach. | 104 |
| abstract_inverted_index.described | 21 |
| abstract_inverted_index.dynamical | 11, 15 |
| abstract_inverted_index.function. | 27 |
| abstract_inverted_index.graphical | 7, 58 |
| abstract_inverted_index.recovered | 81 |
| abstract_inverted_index.structure | 16 |
| abstract_inverted_index.variables | 19, 37, 79 |
| abstract_inverted_index.Simulation | 93 |
| abstract_inverted_index.formulated | 54 |
| abstract_inverted_index.illustrate | 98 |
| abstract_inverted_index.polynomial | 25 |
| abstract_inverted_index.reweighted | 70 |
| abstract_inverted_index.variables. | 13 |
| abstract_inverted_index.Afterwards, | 74 |
| abstract_inverted_index.programming | 91 |
| abstract_inverted_index.interactions | 33 |
| abstract_inverted_index.optimization | 51 |
| abstract_inverted_index.approximation | 68 |
| abstract_inverted_index.decomposition | 85 |
| abstract_inverted_index.effectiveness | 100 |
| abstract_inverted_index.minimization. | 73 |
| abstract_inverted_index.autoregressive | 8 |
| abstract_inverted_index.identification | 5 |
| abstract_inverted_index.auto-regressive | 59 |
| abstract_inverted_index.latent-variable | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |