Sparse Recovery With Block Multiple Measurement Vectors Algorithm Article Swipe
Yanli Shi
,
Libo Wang
,
Rong Luo
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2891568
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2891568
This paper investigates the performance of the block multiple measurement vectors (BMMV) algorithm in reconstructing block joint sparse matrices. We prove that if 41) obeys block restricted isometry property with 8 K+1 <; Nf +1 , then BMMV perfectly reconstructs any block K -joint sparse matrix X from observations Y = (DX in K iterations. We also show that BMMV may not reconstruct block K -joint sparse matrices in K iterations under the condition K+1 > , 1 That is to say, the condition 8K +l <; , 1 is v1C+1 vIC+1 optimal for the BMMV algorithm.
Related Topics
Concepts
Restricted isometry property
Block (permutation group theory)
Algorithm
Sparse matrix
Property (philosophy)
Joint (building)
Isometry (Riemannian geometry)
Matrix (chemical analysis)
Computer science
Mathematics
Combinatorics
Compressed sensing
Physics
Gaussian
Pure mathematics
Materials science
Engineering
Composite material
Quantum mechanics
Epistemology
Architectural engineering
Philosophy
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2891568
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2909012149
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2909012149Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2891568Digital Object Identifier
- Title
-
Sparse Recovery With Block Multiple Measurement Vectors AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Yanli Shi, Libo Wang, Rong LuoList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2891568Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdfDirect OA link when available
- Concepts
-
Restricted isometry property, Block (permutation group theory), Algorithm, Sparse matrix, Property (philosophy), Joint (building), Isometry (Riemannian geometry), Matrix (chemical analysis), Computer science, Mathematics, Combinatorics, Compressed sensing, Physics, Gaussian, Pure mathematics, Materials science, Engineering, Composite material, Quantum mechanics, Epistemology, Architectural engineering, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 2, 2022: 1, 2021: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2909012149 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2891568 |
| ids.doi | https://doi.org/10.1109/access.2019.2891568 |
| ids.mag | 2909012149 |
| ids.openalex | https://openalex.org/W2909012149 |
| fwci | 0.86058243 |
| type | article |
| title | Sparse Recovery With Block Multiple Measurement Vectors Algorithm |
| awards[0].id | https://openalex.org/G4515569331 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 11871248 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4141534033 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | 21618331 |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 9475 |
| biblio.first_page | 9470 |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T11739 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Microwave Imaging and Scattering Analysis |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C17902559 |
| concepts[0].level | 3 |
| concepts[0].score | 0.814547598361969 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17099734 |
| concepts[0].display_name | Restricted isometry property |
| concepts[1].id | https://openalex.org/C2777210771 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7988032102584839 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[1].display_name | Block (permutation group theory) |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7101143598556519 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C56372850 |
| concepts[3].level | 3 |
| concepts[3].score | 0.571771502494812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[3].display_name | Sparse matrix |
| concepts[4].id | https://openalex.org/C189950617 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5487655997276306 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[4].display_name | Property (philosophy) |
| concepts[5].id | https://openalex.org/C18555067 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5362756848335266 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[5].display_name | Joint (building) |
| concepts[6].id | https://openalex.org/C82457910 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5187292695045471 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q740207 |
| concepts[6].display_name | Isometry (Riemannian geometry) |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49436020851135254 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4885059595108032 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.42396289110183716 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37069717049598694 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C124851039 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2767453193664551 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[11].display_name | Compressed sensing |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09957274794578552 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C163716315 |
| concepts[13].level | 2 |
| concepts[13].score | 0.08288142085075378 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[13].display_name | Gaussian |
| concepts[14].id | https://openalex.org/C202444582 |
| concepts[14].level | 1 |
| concepts[14].score | 0.07454761862754822 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[14].display_name | Pure mathematics |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.05094802379608154 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C159985019 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[17].display_name | Composite material |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C111472728 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[19].display_name | Epistemology |
| concepts[20].id | https://openalex.org/C170154142 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[20].display_name | Architectural engineering |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/restricted-isometry-property |
| keywords[0].score | 0.814547598361969 |
| keywords[0].display_name | Restricted isometry property |
| keywords[1].id | https://openalex.org/keywords/block |
| keywords[1].score | 0.7988032102584839 |
| keywords[1].display_name | Block (permutation group theory) |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.7101143598556519 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/sparse-matrix |
| keywords[3].score | 0.571771502494812 |
| keywords[3].display_name | Sparse matrix |
| keywords[4].id | https://openalex.org/keywords/property |
| keywords[4].score | 0.5487655997276306 |
| keywords[4].display_name | Property (philosophy) |
| keywords[5].id | https://openalex.org/keywords/joint |
| keywords[5].score | 0.5362756848335266 |
| keywords[5].display_name | Joint (building) |
| keywords[6].id | https://openalex.org/keywords/isometry |
| keywords[6].score | 0.5187292695045471 |
| keywords[6].display_name | Isometry (Riemannian geometry) |
| keywords[7].id | https://openalex.org/keywords/matrix |
| keywords[7].score | 0.49436020851135254 |
| keywords[7].display_name | Matrix (chemical analysis) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4885059595108032 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.42396289110183716 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.37069717049598694 |
| keywords[10].display_name | Combinatorics |
| keywords[11].id | https://openalex.org/keywords/compressed-sensing |
| keywords[11].score | 0.2767453193664551 |
| keywords[11].display_name | Compressed sensing |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.09957274794578552 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/gaussian |
| keywords[13].score | 0.08288142085075378 |
| keywords[13].display_name | Gaussian |
| keywords[14].id | https://openalex.org/keywords/pure-mathematics |
| keywords[14].score | 0.07454761862754822 |
| keywords[14].display_name | Pure mathematics |
| keywords[15].id | https://openalex.org/keywords/materials-science |
| keywords[15].score | 0.05094802379608154 |
| keywords[15].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2891568 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2891568 |
| locations[1].id | pmh:oai:doaj.org/article:38dd6b8ae9c5406f828d4a99524ca09e |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 9470-9475 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/38dd6b8ae9c5406f828d4a99524ca09e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102025064 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2935-0234 |
| authorships[0].author.display_name | Yanli Shi |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210125838 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Science, Jilin Institute of Chemical Technology, Jilin, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210125838 |
| authorships[0].institutions[0].ror | https://ror.org/03bvz5p76 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210125838 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jilin University of Chemical Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanli Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Science, Jilin Institute of Chemical Technology, Jilin, China |
| authorships[1].author.id | https://openalex.org/A5081089578 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4828-9221 |
| authorships[1].author.display_name | Libo Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I159948400 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Jinan University, Guangzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I159948400 |
| authorships[1].institutions[0].ror | https://ror.org/02xe5ns62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I159948400 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jinan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Libo Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Technology, Jinan University, Guangzhou, China |
| authorships[2].author.id | https://openalex.org/A5066405314 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5237-1001 |
| authorships[2].author.display_name | Rong Luo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4800084 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Mathematics, Southwest Jiaotong University, Chengdu, China |
| authorships[2].institutions[0].id | https://openalex.org/I4800084 |
| authorships[2].institutions[0].ror | https://ror.org/00hn7w693 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4800084 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southwest Jiaotong University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rong Luo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Mathematics, Southwest Jiaotong University, Chengdu, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sparse Recovery With Block Multiple Measurement Vectors Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W4237430004, https://openalex.org/W2025666718, https://openalex.org/W2151106956, https://openalex.org/W2951968883, https://openalex.org/W2975405901, https://openalex.org/W2145432339, https://openalex.org/W2129984171, https://openalex.org/W2122469757, https://openalex.org/W2741884985, https://openalex.org/W34010726 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2891568 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2891568 |
| primary_location.id | doi:10.1109/access.2019.2891568 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08614434.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2891568 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W6706239898, https://openalex.org/W2557873547, https://openalex.org/W2065321782, https://openalex.org/W2826685045, https://openalex.org/W2160979406, https://openalex.org/W1988529089, https://openalex.org/W645359941, https://openalex.org/W1995559202, https://openalex.org/W2013768136, https://openalex.org/W2963219644, https://openalex.org/W2013215082, https://openalex.org/W2550080887, https://openalex.org/W2129812935, https://openalex.org/W2068512312, https://openalex.org/W4250955649, https://openalex.org/W2147276092, https://openalex.org/W2129131372, https://openalex.org/W2033585806, https://openalex.org/W2020390700, https://openalex.org/W2139139435, https://openalex.org/W2127271355, https://openalex.org/W2159514083, https://openalex.org/W2734811486, https://openalex.org/W2162409952, https://openalex.org/W2806946907, https://openalex.org/W2147846067, https://openalex.org/W2152374199, https://openalex.org/W2114129195, https://openalex.org/W1124870649, https://openalex.org/W2964333607, https://openalex.org/W1557195970 |
| referenced_works_count | 31 |
| abstract_inverted_index., | 35, 76, 87 |
| abstract_inverted_index.1 | 77, 88 |
| abstract_inverted_index.8 | 30 |
| abstract_inverted_index.= | 50 |
| abstract_inverted_index.K | 42, 53, 64, 69 |
| abstract_inverted_index.X | 46 |
| abstract_inverted_index.Y | 49 |
| abstract_inverted_index.+1 | 34 |
| abstract_inverted_index.+l | 85 |
| abstract_inverted_index.8K | 84 |
| abstract_inverted_index.Nf | 33 |
| abstract_inverted_index.We | 19, 55 |
| abstract_inverted_index.if | 22 |
| abstract_inverted_index.in | 13, 52, 68 |
| abstract_inverted_index.is | 79, 89 |
| abstract_inverted_index.of | 5 |
| abstract_inverted_index.to | 80 |
| abstract_inverted_index.(DX | 51 |
| abstract_inverted_index.41) | 23 |
| abstract_inverted_index.K+1 | 31, 74 |
| abstract_inverted_index.any | 40 |
| abstract_inverted_index.for | 93 |
| abstract_inverted_index.may | 60 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.the | 3, 6, 72, 82, 94 |
| abstract_inverted_index.> | 75 |
| abstract_inverted_index.BMMV | 37, 59, 95 |
| abstract_inverted_index.That | 78 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 56 |
| abstract_inverted_index.from | 47 |
| abstract_inverted_index.say, | 81 |
| abstract_inverted_index.show | 57 |
| abstract_inverted_index.that | 21, 58 |
| abstract_inverted_index.then | 36 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.<; | 32, 86 |
| abstract_inverted_index.block | 7, 15, 25, 41, 63 |
| abstract_inverted_index.joint | 16 |
| abstract_inverted_index.obeys | 24 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.prove | 20 |
| abstract_inverted_index.under | 71 |
| abstract_inverted_index.v1C+1 | 90 |
| abstract_inverted_index.vIC+1 | 91 |
| abstract_inverted_index.(BMMV) | 11 |
| abstract_inverted_index.-joint | 43, 65 |
| abstract_inverted_index.matrix | 45 |
| abstract_inverted_index.sparse | 17, 44, 66 |
| abstract_inverted_index.optimal | 92 |
| abstract_inverted_index.vectors | 10 |
| abstract_inverted_index.isometry | 27 |
| abstract_inverted_index.matrices | 67 |
| abstract_inverted_index.multiple | 8 |
| abstract_inverted_index.property | 28 |
| abstract_inverted_index.algorithm | 12 |
| abstract_inverted_index.condition | 73, 83 |
| abstract_inverted_index.matrices. | 18 |
| abstract_inverted_index.perfectly | 38 |
| abstract_inverted_index.algorithm. | 96 |
| abstract_inverted_index.iterations | 70 |
| abstract_inverted_index.restricted | 26 |
| abstract_inverted_index.iterations. | 54 |
| abstract_inverted_index.measurement | 9 |
| abstract_inverted_index.performance | 4 |
| abstract_inverted_index.reconstruct | 62 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.observations | 48 |
| abstract_inverted_index.reconstructs | 39 |
| abstract_inverted_index.reconstructing | 14 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.67912749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |