Sparse-View CT Reconstruction via Convolutional Sparse Coding Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1810.06228
Traditional dictionary learning based CT reconstruction methods are patch-based and the features learned with these methods often contain shifted versions of the same features. To deal with these problems, the convolutional sparse coding (CSC) has been proposed and introduced into various applications. In this paper, inspired by the successful applications of CSC in the field of signal processing, we propose a novel sparse-view CT reconstruction method based on CSC with gradient regularization on feature maps. By directly working on whole image, which need not to divide the image into overlapped patches like dictionary learning based methods, the proposed method can maintain more details and avoid the artifacts caused by patch aggregation. Experimental results demonstrate that the proposed method has better performance than several existing algorithms in both qualitative and quantitative aspects.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1810.06228
- https://arxiv.org/pdf/1810.06228
- OA Status
- green
- Cited By
- 1
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2897090886
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2897090886Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1810.06228Digital Object Identifier
- Title
-
Sparse-View CT Reconstruction via Convolutional Sparse CodingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-10-15Full publication date if available
- Authors
-
Peng Bao, Wenjun Xia, Kang Yang, Jiliu Zhou, Yi ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/1810.06228Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1810.06228Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1810.06228Direct OA link when available
- Concepts
-
Computer science, Neural coding, Artificial intelligence, Regularization (linguistics), Dictionary learning, Pattern recognition (psychology), Coding (social sciences), Feature (linguistics), Iterative reconstruction, Convolutional neural network, Sparse matrix, Field (mathematics), Image (mathematics), Computer vision, Mathematics, Gaussian, Quantum mechanics, Statistics, Physics, Pure mathematics, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2897090886 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1810.06228 |
| ids.doi | https://doi.org/10.48550/arxiv.1810.06228 |
| ids.mag | 2897090886 |
| ids.openalex | https://openalex.org/W2897090886 |
| fwci | |
| type | preprint |
| title | Sparse-View CT Reconstruction via Convolutional Sparse Coding |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T12015 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9983999729156494 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Photoacoustic and Ultrasonic Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7975819110870361 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C77637269 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7882686853408813 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7002051 |
| concepts[1].display_name | Neural coding |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6711747050285339 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2776135515 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6505587697029114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[3].display_name | Regularization (linguistics) |
| concepts[4].id | https://openalex.org/C2988886741 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5715020298957825 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25304494 |
| concepts[4].display_name | Dictionary learning |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5694435238838196 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C179518139 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5323477387428284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[6].display_name | Coding (social sciences) |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.482313871383667 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C141379421 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4628853499889374 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6094427 |
| concepts[8].display_name | Iterative reconstruction |
| concepts[9].id | https://openalex.org/C81363708 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46212977170944214 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[9].display_name | Convolutional neural network |
| concepts[10].id | https://openalex.org/C56372850 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41952022910118103 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[10].display_name | Sparse matrix |
| concepts[11].id | https://openalex.org/C9652623 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4147266149520874 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[11].display_name | Field (mathematics) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.35165107250213623 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.33240944147109985 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09981060028076172 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C163716315 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[15].display_name | Gaussian |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C202444582 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[19].display_name | Pure mathematics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C41895202 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[21].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7975819110870361 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/neural-coding |
| keywords[1].score | 0.7882686853408813 |
| keywords[1].display_name | Neural coding |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6711747050285339 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/regularization |
| keywords[3].score | 0.6505587697029114 |
| keywords[3].display_name | Regularization (linguistics) |
| keywords[4].id | https://openalex.org/keywords/dictionary-learning |
| keywords[4].score | 0.5715020298957825 |
| keywords[4].display_name | Dictionary learning |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5694435238838196 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/coding |
| keywords[6].score | 0.5323477387428284 |
| keywords[6].display_name | Coding (social sciences) |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.482313871383667 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/iterative-reconstruction |
| keywords[8].score | 0.4628853499889374 |
| keywords[8].display_name | Iterative reconstruction |
| keywords[9].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[9].score | 0.46212977170944214 |
| keywords[9].display_name | Convolutional neural network |
| keywords[10].id | https://openalex.org/keywords/sparse-matrix |
| keywords[10].score | 0.41952022910118103 |
| keywords[10].display_name | Sparse matrix |
| keywords[11].id | https://openalex.org/keywords/field |
| keywords[11].score | 0.4147266149520874 |
| keywords[11].display_name | Field (mathematics) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.35165107250213623 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.33240944147109985 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09981060028076172 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1810.06228 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1810.06228 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1810.06228 |
| locations[1].id | doi:10.48550/arxiv.1810.06228 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1810.06228 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101687577 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8447-8321 |
| authorships[0].author.display_name | Peng Bao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[0].institutions[0].id | https://openalex.org/I24185976 |
| authorships[0].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sichuan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Bao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[1].author.id | https://openalex.org/A5045882773 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0428-1490 |
| authorships[1].author.display_name | Wenjun Xia |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[1].institutions[0].id | https://openalex.org/I24185976 |
| authorships[1].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sichuan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenjun Xia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[2].author.id | https://openalex.org/A5109594912 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kang Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[2].institutions[0].id | https://openalex.org/I24185976 |
| authorships[2].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Sichuan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kang Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[3].author.id | https://openalex.org/A5102009027 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6864-9509 |
| authorships[3].author.display_name | Jiliu Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[3].institutions[0].id | https://openalex.org/I24185976 |
| authorships[3].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sichuan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiliu Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[4].author.id | https://openalex.org/A5100388053 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7201-2092 |
| authorships[4].author.display_name | Yi Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24185976 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| authorships[4].institutions[0].id | https://openalex.org/I24185976 |
| authorships[4].institutions[0].ror | https://ror.org/011ashp19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24185976 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sichuan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yi Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science, Sichuan University, Chengdu, 610065 China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1810.06228 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sparse-View CT Reconstruction via Convolutional Sparse Coding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| related_works | https://openalex.org/W2793063187, https://openalex.org/W2161305109, https://openalex.org/W2081533887, https://openalex.org/W22502857, https://openalex.org/W2026350744, https://openalex.org/W2895515333, https://openalex.org/W2511045973, https://openalex.org/W2613073969, https://openalex.org/W204290405, https://openalex.org/W2157785665 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1810.06228 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1810.06228 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1810.06228 |
| primary_location.id | pmh:oai:arXiv.org:1810.06228 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1810.06228 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1810.06228 |
| publication_date | 2018-10-15 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2153663612, https://openalex.org/W2094366314, https://openalex.org/W2584483805, https://openalex.org/W2142743510, https://openalex.org/W2000594266, https://openalex.org/W2190662802, https://openalex.org/W1676212501, https://openalex.org/W2054393756, https://openalex.org/W2793419304, https://openalex.org/W2802555497 |
| referenced_works_count | 10 |
| abstract_inverted_index.a | 60 |
| abstract_inverted_index.By | 75 |
| abstract_inverted_index.CT | 4, 63 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.To | 24 |
| abstract_inverted_index.by | 46, 108 |
| abstract_inverted_index.in | 52, 125 |
| abstract_inverted_index.of | 20, 50, 55 |
| abstract_inverted_index.on | 67, 72, 78 |
| abstract_inverted_index.to | 84 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.CSC | 51, 68 |
| abstract_inverted_index.and | 9, 37, 103, 128 |
| abstract_inverted_index.are | 7 |
| abstract_inverted_index.can | 99 |
| abstract_inverted_index.has | 34, 118 |
| abstract_inverted_index.not | 83 |
| abstract_inverted_index.the | 10, 21, 29, 47, 53, 86, 96, 105, 115 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.both | 126 |
| abstract_inverted_index.deal | 25 |
| abstract_inverted_index.into | 39, 88 |
| abstract_inverted_index.like | 91 |
| abstract_inverted_index.more | 101 |
| abstract_inverted_index.need | 82 |
| abstract_inverted_index.same | 22 |
| abstract_inverted_index.than | 121 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.with | 13, 26, 69 |
| abstract_inverted_index.(CSC) | 33 |
| abstract_inverted_index.avoid | 104 |
| abstract_inverted_index.based | 3, 66, 94 |
| abstract_inverted_index.field | 54 |
| abstract_inverted_index.image | 87 |
| abstract_inverted_index.maps. | 74 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.often | 16 |
| abstract_inverted_index.patch | 109 |
| abstract_inverted_index.these | 14, 27 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.whole | 79 |
| abstract_inverted_index.better | 119 |
| abstract_inverted_index.caused | 107 |
| abstract_inverted_index.coding | 32 |
| abstract_inverted_index.divide | 85 |
| abstract_inverted_index.image, | 80 |
| abstract_inverted_index.method | 65, 98, 117 |
| abstract_inverted_index.paper, | 44 |
| abstract_inverted_index.signal | 56 |
| abstract_inverted_index.sparse | 31 |
| abstract_inverted_index.contain | 17 |
| abstract_inverted_index.details | 102 |
| abstract_inverted_index.feature | 73 |
| abstract_inverted_index.learned | 12 |
| abstract_inverted_index.methods | 6, 15 |
| abstract_inverted_index.patches | 90 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.several | 122 |
| abstract_inverted_index.shifted | 18 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.working | 77 |
| abstract_inverted_index.aspects. | 130 |
| abstract_inverted_index.directly | 76 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.features | 11 |
| abstract_inverted_index.gradient | 70 |
| abstract_inverted_index.inspired | 45 |
| abstract_inverted_index.learning | 2, 93 |
| abstract_inverted_index.maintain | 100 |
| abstract_inverted_index.methods, | 95 |
| abstract_inverted_index.proposed | 36, 97, 116 |
| abstract_inverted_index.versions | 19 |
| abstract_inverted_index.artifacts | 106 |
| abstract_inverted_index.features. | 23 |
| abstract_inverted_index.problems, | 28 |
| abstract_inverted_index.algorithms | 124 |
| abstract_inverted_index.dictionary | 1, 92 |
| abstract_inverted_index.introduced | 38 |
| abstract_inverted_index.overlapped | 89 |
| abstract_inverted_index.successful | 48 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.demonstrate | 113 |
| abstract_inverted_index.patch-based | 8 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.processing, | 57 |
| abstract_inverted_index.qualitative | 127 |
| abstract_inverted_index.sparse-view | 62 |
| abstract_inverted_index.Experimental | 111 |
| abstract_inverted_index.aggregation. | 110 |
| abstract_inverted_index.applications | 49 |
| abstract_inverted_index.quantitative | 129 |
| abstract_inverted_index.applications. | 41 |
| abstract_inverted_index.convolutional | 30 |
| abstract_inverted_index.reconstruction | 5, 64 |
| abstract_inverted_index.regularization | 71 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |