SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.00946
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than *1k* parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is publicly available at this repository: https://github.com/lss-1138/SparseTSF.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.00946
- https://arxiv.org/pdf/2405.00946
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396650796
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396650796Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.00946Digital Object Identifier
- Title
-
SparseTSF: Modeling Long-term Time Series Forecasting with 1k ParametersWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-02Full publication date if available
- Authors
-
Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, Junjie YangList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.00946Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.00946Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.00946Direct OA link when available
- Concepts
-
Term (time), Series (stratigraphy), Econometrics, Time series, Computer science, Economics, Machine learning, Geology, Physics, Paleontology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396650796 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.00946 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.00946 |
| ids.openalex | https://openalex.org/W4396650796 |
| fwci | |
| type | preprint |
| title | SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9559000134468079 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9477999806404114 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9222000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61797465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7730626463890076 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1188986 |
| concepts[0].display_name | Term (time) |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7332478165626526 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5066340565681458 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C151406439 |
| concepts[3].level | 2 |
| concepts[3].score | 0.45731326937675476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[3].display_name | Time series |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.42221078276634216 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C162324750 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2424089014530182 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[5].display_name | Economics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.18175184726715088 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09879320859909058 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.07199421525001526 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C151730666 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[9].display_name | Paleontology |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/term |
| keywords[0].score | 0.7730626463890076 |
| keywords[0].display_name | Term (time) |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.7332478165626526 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.5066340565681458 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/time-series |
| keywords[3].score | 0.45731326937675476 |
| keywords[3].display_name | Time series |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.42221078276634216 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/economics |
| keywords[5].score | 0.2424089014530182 |
| keywords[5].display_name | Economics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.18175184726715088 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.09879320859909058 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.07199421525001526 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.00946 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.00946 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.00946 |
| locations[1].id | doi:10.48550/arxiv.2405.00946 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.00946 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015148071 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5445-5148 |
| authorships[0].author.display_name | Shengsheng Lin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lin, Shengsheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007440245 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6876-1795 |
| authorships[1].author.display_name | Weiwei Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lin, Weiwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030234311 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5851-327X |
| authorships[2].author.display_name | Wentai Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Wentai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102900900 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9168-9234 |
| authorships[3].author.display_name | Haojun Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Haojun |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101759929 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6517-5117 |
| authorships[4].author.display_name | Junjie Yang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yang, Junjie |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.00946 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9559000134468079 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.00946 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.00946 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.00946 |
| primary_location.id | pmh:oai:arXiv.org:2405.00946 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.00946 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.00946 |
| publication_date | 2024-05-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4 |
| abstract_inverted_index.At | 32 |
| abstract_inverted_index.at | 130 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 54 |
| abstract_inverted_index.is | 127 |
| abstract_inverted_index.it | 112 |
| abstract_inverted_index.of | 20, 35 |
| abstract_inverted_index.on | 67, 84 |
| abstract_inverted_index.or | 98, 122 |
| abstract_inverted_index.to | 16, 65, 95, 102 |
| abstract_inverted_index.The | 125 |
| abstract_inverted_index.and | 52, 80 |
| abstract_inverted_index.for | 9, 114 |
| abstract_inverted_index.the | 18, 33, 38, 45, 50, 62, 77, 87 |
| abstract_inverted_index.*1k* | 93 |
| abstract_inverted_index.This | 0, 58 |
| abstract_inverted_index.Time | 11 |
| abstract_inverted_index.code | 126 |
| abstract_inverted_index.lies | 37 |
| abstract_inverted_index.over | 25 |
| abstract_inverted_index.task | 47 |
| abstract_inverted_index.than | 92 |
| abstract_inverted_index.this | 85, 131 |
| abstract_inverted_index.time | 55 |
| abstract_inverted_index.uses | 90 |
| abstract_inverted_index.with | 28, 116 |
| abstract_inverted_index.Based | 83 |
| abstract_inverted_index.data. | 57, 124 |
| abstract_inverted_index.fewer | 91 |
| abstract_inverted_index.focus | 66 |
| abstract_inverted_index.heart | 34 |
| abstract_inverted_index.model | 8, 89 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.small | 120 |
| abstract_inverted_index.trend | 53, 69 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.while | 75 |
| abstract_inverted_index.Series | 12 |
| abstract_inverted_index.Sparse | 40 |
| abstract_inverted_index.count. | 82 |
| abstract_inverted_index.making | 111 |
| abstract_inverted_index.novel, | 5 |
| abstract_inverted_index.series | 56 |
| abstract_inverted_index.(LTSF), | 14 |
| abstract_inverted_index.achieve | 96 |
| abstract_inverted_index.address | 17 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.limited | 117 |
| abstract_inverted_index.minimal | 29 |
| abstract_inverted_index.model's | 78 |
| abstract_inverted_index.models. | 104 |
| abstract_inverted_index.compared | 101 |
| abstract_inverted_index.designed | 15 |
| abstract_inverted_index.extended | 26 |
| abstract_inverted_index.features | 74 |
| abstract_inverted_index.horizons | 27 |
| abstract_inverted_index.involves | 60 |
| abstract_inverted_index.modeling | 21 |
| abstract_inverted_index.original | 63 |
| abstract_inverted_index.periodic | 73 |
| abstract_inverted_index.publicly | 128 |
| abstract_inverted_index.samples, | 121 |
| abstract_inverted_index.superior | 99 |
| abstract_inverted_index.temporal | 23 |
| abstract_inverted_index.Long-term | 10 |
| abstract_inverted_index.SparseTSF | 36, 88, 106 |
| abstract_inverted_index.available | 129 |
| abstract_inverted_index.extremely | 6 |
| abstract_inverted_index.parameter | 81 |
| abstract_inverted_index.scenarios | 115 |
| abstract_inverted_index.sequences | 64 |
| abstract_inverted_index.showcases | 107 |
| abstract_inverted_index.technique | 59 |
| abstract_inverted_index.SparseTSF, | 3 |
| abstract_inverted_index.challenges | 19 |
| abstract_inverted_index.complexity | 79 |
| abstract_inverted_index.decoupling | 49 |
| abstract_inverted_index.extracting | 72 |
| abstract_inverted_index.introduces | 2 |
| abstract_inverted_index.minimizing | 76 |
| abstract_inverted_index.parameters | 94 |
| abstract_inverted_index.remarkable | 108 |
| abstract_inverted_index.resources, | 119 |
| abstract_inverted_index.resources. | 31 |
| abstract_inverted_index.simplifies | 44 |
| abstract_inverted_index.technique, | 42, 86 |
| abstract_inverted_index.Forecasting | 13, 41 |
| abstract_inverted_index.competitive | 97 |
| abstract_inverted_index.effectively | 71 |
| abstract_inverted_index.forecasting | 46 |
| abstract_inverted_index.lightweight | 7 |
| abstract_inverted_index.low-quality | 123 |
| abstract_inverted_index.performance | 100 |
| abstract_inverted_index.periodicity | 51 |
| abstract_inverted_index.prediction, | 70 |
| abstract_inverted_index.repository: | 132 |
| abstract_inverted_index.well-suited | 113 |
| abstract_inverted_index.Cross-Period | 39 |
| abstract_inverted_index.Furthermore, | 105 |
| abstract_inverted_index.cross-period | 68 |
| abstract_inverted_index.dependencies | 24 |
| abstract_inverted_index.downsampling | 61 |
| abstract_inverted_index.capabilities, | 110 |
| abstract_inverted_index.computational | 30, 118 |
| abstract_inverted_index.generalization | 109 |
| abstract_inverted_index.state-of-the-art | 103 |
| abstract_inverted_index.https://github.com/lss-1138/SparseTSF. | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |