Spatial and temporal analysis of scooter-induced traffic patterns and their environmental implications Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.aeaoa.2024.100291
Scooters are a popular means of transportation in urban areas. However, studies examining their spatial and temporal features are lacking. This study examined traffic patterns in New Taipei City from September 2021 to June 2023 using real-time surveillance camera images and the YOLOv4 algorithm. The focus of the study was to investigate the role of scooters in urban transportation and their effect on air quality. The findings revealed that sedans and scooters accounted for approximately 90% of the total vehicles, and their usage exhibited significant spatial and temporal variations across the city. Sedans were more prevalent in rural areas, whereas scooters were predominant in urban and suburban regions. An examination of diurnal patterns revealed that peak traffic occurred during early morning and evening rush hours, with distinct usage patterns between weekdays and weekends. Through hierarchical clustering, the city's stations were categorized into three types based on the dominant vehicle usage: sedan-dominant, sedan-prevailing, and scooter-dominant. The analysis also established a correlation between the number of vehicles and air pollution, highlighting the significant role of sedans and scooters as primary sources of emissions, particularly in areas where scooters were dominant. This suggests that the current emission inventories may underestimate the impact of scooters and buses on air quality while overestimating the trucks' contribution. Consequently, this study emphasizes the significance of scooters in determining urban air quality and advocates for improved monitoring and image identification technologies to accurately assess the numbers and speeds of scooters. These measures are essential for improving the accuracy of emissions inventories and forecasts, which are crucial for effective urban air quality management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aeaoa.2024.100291
- OA Status
- gold
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401798766
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401798766Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aeaoa.2024.100291Digital Object Identifier
- Title
-
Spatial and temporal analysis of scooter-induced traffic patterns and their environmental implicationsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-01Full publication date if available
- Authors
-
I‐Chun Tsai, Chenwei Lin, Shih‐Hao Su, Chiao-Wei Chang, Chih-Wen Su, Shih‐Chun Candice LungList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aeaoa.2024.100291Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aeaoa.2024.100291Direct OA link when available
- Concepts
-
Environmental science, Geography, Transport engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401798766 |
|---|---|
| doi | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| ids.doi | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| ids.openalex | https://openalex.org/W4401798766 |
| fwci | 0.0 |
| type | article |
| title | Spatial and temporal analysis of scooter-induced traffic patterns and their environmental implications |
| awards[0].id | https://openalex.org/G7932265741 |
| awards[0].funder_id | https://openalex.org/F4320321041 |
| awards[0].display_name | |
| awards[0].funder_award_id | AS-SS-110-02 |
| awards[0].funder_display_name | Academia Sinica |
| biblio.issue | |
| biblio.volume | 23 |
| biblio.last_page | 100291 |
| biblio.first_page | 100291 |
| topics[0].id | https://openalex.org/T10298 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Urban Transport and Accessibility |
| topics[1].id | https://openalex.org/T11692 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9871000051498413 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3616 |
| topics[1].subfield.display_name | Speech and Hearing |
| topics[1].display_name | Noise Effects and Management |
| topics[2].id | https://openalex.org/T10190 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9814000129699707 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2307 |
| topics[2].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[2].display_name | Air Quality and Health Impacts |
| funders[0].id | https://openalex.org/F4320321041 |
| funders[0].ror | https://ror.org/05bxb3784 |
| funders[0].display_name | Academia Sinica |
| funders[1].id | https://openalex.org/F4320331164 |
| funders[1].ror | https://ror.org/00wnb9798 |
| funders[1].display_name | National Science and Technology Council |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | USD |
| apc_list.value_usd | 1400 |
| apc_paid.value | 1400 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1400 |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4192192554473877 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C205649164 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3497578501701355 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[1].display_name | Geography |
| concepts[2].id | https://openalex.org/C22212356 |
| concepts[2].level | 1 |
| concepts[2].score | 0.34643569588661194 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[2].display_name | Transport engineering |
| concepts[3].id | https://openalex.org/C127413603 |
| concepts[3].level | 0 |
| concepts[3].score | 0.20386704802513123 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[3].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.4192192554473877 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/geography |
| keywords[1].score | 0.3497578501701355 |
| keywords[1].display_name | Geography |
| keywords[2].id | https://openalex.org/keywords/transport-engineering |
| keywords[2].score | 0.34643569588661194 |
| keywords[2].display_name | Transport engineering |
| keywords[3].id | https://openalex.org/keywords/engineering |
| keywords[3].score | 0.20386704802513123 |
| keywords[3].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.aeaoa.2024.100291 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206941 |
| locations[0].source.issn | 2590-1621 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2590-1621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Atmospheric Environment X |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Atmospheric Environment: X |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| locations[1].id | pmh:oai:doaj.org/article:c22328301ea14f90a93679633c8c1e07 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Atmospheric Environment: X, Vol 23, Iss , Pp 100291- (2024) |
| locations[1].landing_page_url | https://doaj.org/article/c22328301ea14f90a93679633c8c1e07 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5078667374 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8277-2327 |
| authorships[0].author.display_name | I‐Chun Tsai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | I-Chun Tsai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5055968334 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7025-2770 |
| authorships[1].author.display_name | Chenwei Lin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen-Wei Lin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5091026235 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1311-0287 |
| authorships[2].author.display_name | Shih‐Hao Su |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shih-Hao Su |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5106689202 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chiao-Wei Chang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chiao-Wei Chang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5106820401 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chih-Wen Su |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chih-Wen Su |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002700530 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4227-0469 |
| authorships[5].author.display_name | Shih‐Chun Candice Lung |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shih-Chun Candice Lung |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatial and temporal analysis of scooter-induced traffic patterns and their environmental implications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10298 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Urban Transport and Accessibility |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W590383186, https://openalex.org/W3007404728, https://openalex.org/W1595912296, https://openalex.org/W2374021052, https://openalex.org/W567987265, https://openalex.org/W2110536732, https://openalex.org/W1596963112, https://openalex.org/W1984740135, https://openalex.org/W3117958761 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aeaoa.2024.100291 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206941 |
| best_oa_location.source.issn | 2590-1621 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2590-1621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Atmospheric Environment X |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Atmospheric Environment: X |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| primary_location.id | doi:10.1016/j.aeaoa.2024.100291 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206941 |
| primary_location.source.issn | 2590-1621 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2590-1621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Atmospheric Environment X |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Atmospheric Environment: X |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aeaoa.2024.100291 |
| publication_date | 2024-08-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2613518054, https://openalex.org/W4224313769, https://openalex.org/W2793250447, https://openalex.org/W1992341169, https://openalex.org/W4361854625, https://openalex.org/W2995214565, https://openalex.org/W2757791929, https://openalex.org/W2765726697, https://openalex.org/W1664564878, https://openalex.org/W4383506126, https://openalex.org/W3137975578, https://openalex.org/W3187591745, https://openalex.org/W2763108738, https://openalex.org/W3171670265, https://openalex.org/W4213317270, https://openalex.org/W3018769771, https://openalex.org/W3018757597 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 2, 158 |
| abstract_inverted_index.An | 108 |
| abstract_inverted_index.as | 176 |
| abstract_inverted_index.in | 7, 25, 56, 96, 103, 182, 219 |
| abstract_inverted_index.of | 5, 46, 54, 76, 110, 163, 172, 179, 199, 217, 240, 250 |
| abstract_inverted_index.on | 62, 145, 203 |
| abstract_inverted_index.to | 32, 50, 233 |
| abstract_inverted_index.90% | 75 |
| abstract_inverted_index.New | 26 |
| abstract_inverted_index.The | 44, 65, 154 |
| abstract_inverted_index.air | 63, 166, 204, 222, 261 |
| abstract_inverted_index.and | 15, 40, 59, 70, 80, 86, 105, 121, 131, 152, 165, 174, 201, 224, 229, 238, 253 |
| abstract_inverted_index.are | 1, 18, 244, 256 |
| abstract_inverted_index.for | 73, 226, 246, 258 |
| abstract_inverted_index.may | 195 |
| abstract_inverted_index.the | 41, 47, 52, 77, 90, 136, 146, 161, 169, 191, 197, 208, 215, 236, 248 |
| abstract_inverted_index.was | 49 |
| abstract_inverted_index.2021 | 31 |
| abstract_inverted_index.2023 | 34 |
| abstract_inverted_index.City | 28 |
| abstract_inverted_index.June | 33 |
| abstract_inverted_index.This | 20, 188 |
| abstract_inverted_index.also | 156 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.more | 94 |
| abstract_inverted_index.peak | 115 |
| abstract_inverted_index.role | 53, 171 |
| abstract_inverted_index.rush | 123 |
| abstract_inverted_index.that | 68, 114, 190 |
| abstract_inverted_index.this | 212 |
| abstract_inverted_index.were | 93, 101, 139, 186 |
| abstract_inverted_index.with | 125 |
| abstract_inverted_index.These | 242 |
| abstract_inverted_index.areas | 183 |
| abstract_inverted_index.based | 144 |
| abstract_inverted_index.buses | 202 |
| abstract_inverted_index.city. | 91 |
| abstract_inverted_index.early | 119 |
| abstract_inverted_index.focus | 45 |
| abstract_inverted_index.image | 230 |
| abstract_inverted_index.means | 4 |
| abstract_inverted_index.rural | 97 |
| abstract_inverted_index.study | 21, 48, 213 |
| abstract_inverted_index.their | 13, 60, 81 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.total | 78 |
| abstract_inverted_index.types | 143 |
| abstract_inverted_index.urban | 8, 57, 104, 221, 260 |
| abstract_inverted_index.usage | 82, 127 |
| abstract_inverted_index.using | 35 |
| abstract_inverted_index.where | 184 |
| abstract_inverted_index.which | 255 |
| abstract_inverted_index.while | 206 |
| abstract_inverted_index.Sedans | 92 |
| abstract_inverted_index.Taipei | 27 |
| abstract_inverted_index.YOLOv4 | 42 |
| abstract_inverted_index.across | 89 |
| abstract_inverted_index.areas, | 98 |
| abstract_inverted_index.areas. | 9 |
| abstract_inverted_index.assess | 235 |
| abstract_inverted_index.camera | 38 |
| abstract_inverted_index.city's | 137 |
| abstract_inverted_index.during | 118 |
| abstract_inverted_index.effect | 61 |
| abstract_inverted_index.hours, | 124 |
| abstract_inverted_index.images | 39 |
| abstract_inverted_index.impact | 198 |
| abstract_inverted_index.number | 162 |
| abstract_inverted_index.sedans | 69, 173 |
| abstract_inverted_index.speeds | 239 |
| abstract_inverted_index.usage: | 149 |
| abstract_inverted_index.Through | 133 |
| abstract_inverted_index.between | 129, 160 |
| abstract_inverted_index.crucial | 257 |
| abstract_inverted_index.current | 192 |
| abstract_inverted_index.diurnal | 111 |
| abstract_inverted_index.evening | 122 |
| abstract_inverted_index.morning | 120 |
| abstract_inverted_index.numbers | 237 |
| abstract_inverted_index.popular | 3 |
| abstract_inverted_index.primary | 177 |
| abstract_inverted_index.quality | 205, 223, 262 |
| abstract_inverted_index.sources | 178 |
| abstract_inverted_index.spatial | 14, 85 |
| abstract_inverted_index.studies | 11 |
| abstract_inverted_index.traffic | 23, 116 |
| abstract_inverted_index.trucks' | 209 |
| abstract_inverted_index.vehicle | 148 |
| abstract_inverted_index.whereas | 99 |
| abstract_inverted_index.However, | 10 |
| abstract_inverted_index.Scooters | 0 |
| abstract_inverted_index.accuracy | 249 |
| abstract_inverted_index.analysis | 155 |
| abstract_inverted_index.distinct | 126 |
| abstract_inverted_index.dominant | 147 |
| abstract_inverted_index.emission | 193 |
| abstract_inverted_index.examined | 22 |
| abstract_inverted_index.features | 17 |
| abstract_inverted_index.findings | 66 |
| abstract_inverted_index.improved | 227 |
| abstract_inverted_index.lacking. | 19 |
| abstract_inverted_index.measures | 243 |
| abstract_inverted_index.occurred | 117 |
| abstract_inverted_index.patterns | 24, 112, 128 |
| abstract_inverted_index.quality. | 64 |
| abstract_inverted_index.regions. | 107 |
| abstract_inverted_index.revealed | 67, 113 |
| abstract_inverted_index.scooters | 55, 71, 100, 175, 185, 200, 218 |
| abstract_inverted_index.stations | 138 |
| abstract_inverted_index.suburban | 106 |
| abstract_inverted_index.suggests | 189 |
| abstract_inverted_index.temporal | 16, 87 |
| abstract_inverted_index.vehicles | 164 |
| abstract_inverted_index.weekdays | 130 |
| abstract_inverted_index.September | 30 |
| abstract_inverted_index.accounted | 72 |
| abstract_inverted_index.advocates | 225 |
| abstract_inverted_index.dominant. | 187 |
| abstract_inverted_index.effective | 259 |
| abstract_inverted_index.emissions | 251 |
| abstract_inverted_index.essential | 245 |
| abstract_inverted_index.examining | 12 |
| abstract_inverted_index.exhibited | 83 |
| abstract_inverted_index.improving | 247 |
| abstract_inverted_index.prevalent | 95 |
| abstract_inverted_index.real-time | 36 |
| abstract_inverted_index.scooters. | 241 |
| abstract_inverted_index.vehicles, | 79 |
| abstract_inverted_index.weekends. | 132 |
| abstract_inverted_index.accurately | 234 |
| abstract_inverted_index.algorithm. | 43 |
| abstract_inverted_index.emissions, | 180 |
| abstract_inverted_index.emphasizes | 214 |
| abstract_inverted_index.forecasts, | 254 |
| abstract_inverted_index.monitoring | 228 |
| abstract_inverted_index.pollution, | 167 |
| abstract_inverted_index.variations | 88 |
| abstract_inverted_index.categorized | 140 |
| abstract_inverted_index.clustering, | 135 |
| abstract_inverted_index.correlation | 159 |
| abstract_inverted_index.determining | 220 |
| abstract_inverted_index.established | 157 |
| abstract_inverted_index.examination | 109 |
| abstract_inverted_index.inventories | 194, 252 |
| abstract_inverted_index.investigate | 51 |
| abstract_inverted_index.management. | 263 |
| abstract_inverted_index.predominant | 102 |
| abstract_inverted_index.significant | 84, 170 |
| abstract_inverted_index.hierarchical | 134 |
| abstract_inverted_index.highlighting | 168 |
| abstract_inverted_index.particularly | 181 |
| abstract_inverted_index.significance | 216 |
| abstract_inverted_index.surveillance | 37 |
| abstract_inverted_index.technologies | 232 |
| abstract_inverted_index.Consequently, | 211 |
| abstract_inverted_index.approximately | 74 |
| abstract_inverted_index.contribution. | 210 |
| abstract_inverted_index.underestimate | 196 |
| abstract_inverted_index.identification | 231 |
| abstract_inverted_index.overestimating | 207 |
| abstract_inverted_index.transportation | 6, 58 |
| abstract_inverted_index.sedan-dominant, | 150 |
| abstract_inverted_index.scooter-dominant. | 153 |
| abstract_inverted_index.sedan-prevailing, | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.11386227 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |