Spatial Attention-Based Deep Learning System for Breast Cancer Pathological Complete Response Prediction with Serial Histopathology Images in Multiple Stains Article Swipe
Hongyi Duanmu
,
Shristi Bhattarai
,
Hongxiao Li
,
Chia Cheng Cheng
,
Fusheng Wang
,
George Teodoro
,
Emiel A. M. Janssen
,
Keerthi Gogineni
,
Preeti Subhedar
,
Ritu Aneja
,
Jun Kong
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-030-87237-3_53
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-030-87237-3_53
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-030-87237-3_53
- OA Status
- green
- Cited By
- 8
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3202997066
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3202997066Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-030-87237-3_53Digital Object Identifier
- Title
-
Spatial Attention-Based Deep Learning System for Breast Cancer Pathological Complete Response Prediction with Serial Histopathology Images in Multiple StainsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Hongyi Duanmu, Shristi Bhattarai, Hongxiao Li, Chia Cheng Cheng, Fusheng Wang, George Teodoro, Emiel A. M. Janssen, Keerthi Gogineni, Preeti Subhedar, Ritu Aneja, Jun KongList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-030-87237-3_53Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9535677Direct OA link when available
- Concepts
-
Computer science, Interpretability, Artificial intelligence, Triple-negative breast cancer, Feature (linguistics), Breast cancer, Pattern recognition (psychology), Deep learning, Cancer, Medicine, Internal medicine, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2022: 3, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3202997066 |
|---|---|
| doi | https://doi.org/10.1007/978-3-030-87237-3_53 |
| ids.doi | https://doi.org/10.1007/978-3-030-87237-3_53 |
| ids.mag | 3202997066 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36222817 |
| ids.openalex | https://openalex.org/W3202997066 |
| fwci | 2.35046243 |
| type | article |
| title | Spatial Attention-Based Deep Learning System for Breast Cancer Pathological Complete Response Prediction with Serial Histopathology Images in Multiple Stains |
| biblio.issue | |
| biblio.volume | 12908 |
| biblio.last_page | 560 |
| biblio.first_page | 550 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10146 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Cervical Cancer and HPV Research |
| is_xpac | False |
| apc_list.value | 5000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 5392 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7580821514129639 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2781067378 |
| concepts[1].level | 2 |
| concepts[1].score | 0.620414137840271 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[1].display_name | Interpretability |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6144371628761292 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780110267 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5060428977012634 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7843332 |
| concepts[3].display_name | Triple-negative breast cancer |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4942648410797119 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C530470458 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48880359530448914 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[5].display_name | Breast cancer |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45905765891075134 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4161488711833954 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C121608353 |
| concepts[8].level | 2 |
| concepts[8].score | 0.23292946815490723 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[8].display_name | Cancer |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.22811567783355713 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07578122615814209 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C41895202 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[11].display_name | Linguistics |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7580821514129639 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/interpretability |
| keywords[1].score | 0.620414137840271 |
| keywords[1].display_name | Interpretability |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6144371628761292 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/triple-negative-breast-cancer |
| keywords[3].score | 0.5060428977012634 |
| keywords[3].display_name | Triple-negative breast cancer |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.4942648410797119 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/breast-cancer |
| keywords[5].score | 0.48880359530448914 |
| keywords[5].display_name | Breast cancer |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.45905765891075134 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4161488711833954 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/cancer |
| keywords[8].score | 0.23292946815490723 |
| keywords[8].display_name | Cancer |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.22811567783355713 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.07578122615814209 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1007/978-3-030-87237-3_53 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S106296714 |
| locations[0].source.issn | 0302-9743, 1611-3349 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0302-9743 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Lecture notes in computer science |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Lecture Notes in Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-030-87237-3_53 |
| locations[1].id | pmid:36222817 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36222817 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9535677 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Med Image Comput Comput Assist Interv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9535677 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5090147550 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5707-0515 |
| authorships[0].author.display_name | Hongyi Duanmu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[0].affiliations[0].raw_affiliation_string | Stony Brook University, Stony Brook, USA |
| authorships[0].institutions[0].id | https://openalex.org/I59553526 |
| authorships[0].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stony Brook University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hongyi Duanmu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stony Brook University, Stony Brook, USA |
| authorships[1].author.id | https://openalex.org/A5101509673 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6639-057X |
| authorships[1].author.display_name | Shristi Bhattarai |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[1].affiliations[0].raw_affiliation_string | Georgia State University, Atlanta, USA |
| authorships[1].institutions[0].id | https://openalex.org/I181565077 |
| authorships[1].institutions[0].ror | https://ror.org/03qt6ba18 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181565077 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shristi Bhattarai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Georgia State University, Atlanta, USA |
| authorships[2].author.id | https://openalex.org/A5101824486 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6114-8215 |
| authorships[2].author.display_name | Hongxiao Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[2].affiliations[0].raw_affiliation_string | Georgia State University, Atlanta, USA |
| authorships[2].institutions[0].id | https://openalex.org/I181565077 |
| authorships[2].institutions[0].ror | https://ror.org/03qt6ba18 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181565077 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Georgia State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hongxiao Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Georgia State University, Atlanta, USA |
| authorships[3].author.id | https://openalex.org/A5058661668 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chia Cheng Cheng |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[3].affiliations[0].raw_affiliation_string | Stony Brook University, Stony Brook, USA |
| authorships[3].institutions[0].id | https://openalex.org/I59553526 |
| authorships[3].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stony Brook University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chia Cheng Cheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Stony Brook University, Stony Brook, USA |
| authorships[4].author.id | https://openalex.org/A5100704639 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9369-9361 |
| authorships[4].author.display_name | Fusheng Wang |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I59553526 |
| authorships[4].affiliations[0].raw_affiliation_string | Stony Brook University, Stony Brook, USA |
| authorships[4].institutions[0].id | https://openalex.org/I59553526 |
| authorships[4].institutions[0].ror | https://ror.org/05qghxh33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I59553526 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stony Brook University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fusheng Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Stony Brook University, Stony Brook, USA |
| authorships[5].author.id | https://openalex.org/A5076465098 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6289-3914 |
| authorships[5].author.display_name | George Teodoro |
| authorships[5].countries | BR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I110200422 |
| authorships[5].affiliations[0].raw_affiliation_string | Federal University of Minas Gerais, Belo Horizonte, Brazil |
| authorships[5].institutions[0].id | https://openalex.org/I110200422 |
| authorships[5].institutions[0].ror | https://ror.org/0176yjw32 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I110200422 |
| authorships[5].institutions[0].country_code | BR |
| authorships[5].institutions[0].display_name | Universidade Federal de Minas Gerais |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | George Teodoro |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Federal University of Minas Gerais, Belo Horizonte, Brazil |
| authorships[6].author.id | https://openalex.org/A5003110329 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7760-5396 |
| authorships[6].author.display_name | Emiel A. M. Janssen |
| authorships[6].countries | NO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2800132241 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[6].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[6].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[6].institutions[0].country_code | NO |
| authorships[6].institutions[0].display_name | Stavanger University Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Emiel A. M. Janssen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Pathology, Stavanger University Hospital, Stavanger, Norway |
| authorships[7].author.id | https://openalex.org/A5078752481 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9822-797X |
| authorships[7].author.display_name | Keerthi Gogineni |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[7].affiliations[0].raw_affiliation_string | Emory University, Atlanta, USA |
| authorships[7].institutions[0].id | https://openalex.org/I150468666 |
| authorships[7].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Emory University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Keerthi Gogineni |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Emory University, Atlanta, USA |
| authorships[8].author.id | https://openalex.org/A5042955897 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4527-0402 |
| authorships[8].author.display_name | Preeti Subhedar |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I150468666 |
| authorships[8].affiliations[0].raw_affiliation_string | Emory University, Atlanta, USA |
| authorships[8].institutions[0].id | https://openalex.org/I150468666 |
| authorships[8].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Emory University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Preeti Subhedar |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Emory University, Atlanta, USA |
| authorships[9].author.id | https://openalex.org/A5019846100 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4489-5320 |
| authorships[9].author.display_name | Ritu Aneja |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[9].affiliations[0].raw_affiliation_string | Georgia State University, Atlanta, USA |
| authorships[9].institutions[0].id | https://openalex.org/I181565077 |
| authorships[9].institutions[0].ror | https://ror.org/03qt6ba18 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I181565077 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Georgia State University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ritu Aneja |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Georgia State University, Atlanta, USA |
| authorships[10].author.id | https://openalex.org/A5066949209 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-8757-8339 |
| authorships[10].author.display_name | Jun Kong |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I181565077 |
| authorships[10].affiliations[0].raw_affiliation_string | Georgia State University, Atlanta, USA |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I150468666 |
| authorships[10].affiliations[1].raw_affiliation_string | Emory University, Atlanta, USA |
| authorships[10].institutions[0].id | https://openalex.org/I150468666 |
| authorships[10].institutions[0].ror | https://ror.org/03czfpz43 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I150468666 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Emory University |
| authorships[10].institutions[1].id | https://openalex.org/I181565077 |
| authorships[10].institutions[1].ror | https://ror.org/03qt6ba18 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I181565077 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | Georgia State University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Jun Kong |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Emory University, Atlanta, USA, Georgia State University, Atlanta, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9535677 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatial Attention-Based Deep Learning System for Breast Cancer Pathological Complete Response Prediction with Serial Histopathology Images in Multiple Stains |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4312407344 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9535677 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Med Image Comput Comput Assist Interv |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9535677 |
| primary_location.id | doi:10.1007/978-3-030-87237-3_53 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S106296714 |
| primary_location.source.issn | 0302-9743, 1611-3349 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0302-9743 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Lecture notes in computer science |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Lecture Notes in Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-030-87237-3_53 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2075894019, https://openalex.org/W2057084727, https://openalex.org/W2758997195, https://openalex.org/W2098324585, https://openalex.org/W2128660547, https://openalex.org/W2946711688, https://openalex.org/W2230805775, https://openalex.org/W2320206053, https://openalex.org/W2570874981, https://openalex.org/W2919115771, https://openalex.org/W4205947740, https://openalex.org/W2964317695, https://openalex.org/W2533800772, https://openalex.org/W2592929672, https://openalex.org/W3000072063, https://openalex.org/W2888359388, https://openalex.org/W2628196379, https://openalex.org/W2963037989, https://openalex.org/W2565639579, https://openalex.org/W2133388973, https://openalex.org/W2150341604, https://openalex.org/W2279691757, https://openalex.org/W2917670819, https://openalex.org/W2962835968 |
| referenced_works_count | 24 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.90845412 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |