SPATIAL DOWNSCALING OF SMAP SOIL MOISTURE USING THE MODIS AND SRTM OBSERVATIONS Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022
The main objective of this study is the spatial downscaling of Soil Moisture Active Passive (SMAP) soil moisture (36 km) using the Moderate Resolution Imaging Spectroradiometer (MODIS) and Shuttle Radar Topography Mission (SRTM) products. The study was conducted over India during the post-monsoon (i.e., Rabi) season Daily SMAP soil moisture (SM) data was composited to 3 days to cover the entire study area. MODIS data for the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Albedo, and Land Surface Temperature (LST) were similarly obtained by constructing a three day composite. SMAP soil moisture was used as a dependent variable, whereas, MODIS NDVI, NDWI, Albedo, LST, and SRTM elevation were used as independent variables in a regression analysis for downscaling of SMAP soil moisture. The coefficient of determination (R2) was used to evaluate the performance of multi-variate linear regression (MLR), support vector regression (SVR), and random forest regression (RFR). Each method was used to test the performance of monthly and seasonal models. RFR outperformed MLR and SVR for monthly and seasonal models. Furthermore, a comparison of monthly and seasonal models revealed that the model created on Jan. data performed best (R2=0.80), while R2 of 0.73, 0.61, 0.75, and 0.76 were attained using RFR for seasonal, Dec., Feb., and Mar. models, respectively. In addition, in-situ soil moisture data was used to validate downscaled soil moisture (1 km). Comparison between downscaled soil moisture and in-situ soil moisture showed good agreement with a difference ranging between −9.3 to 7.4 %.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdf
- OA Status
- diamond
- Cited By
- 4
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293069235
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293069235Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022Digital Object Identifier
- Title
-
SPATIAL DOWNSCALING OF SMAP SOIL MOISTURE USING THE MODIS AND SRTM OBSERVATIONSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-30Full publication date if available
- Authors
-
Jayantrao Mohite, Suryakant Sawant, A. Pandit, S. PappulaList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdfDirect OA link when available
- Concepts
-
Downscaling, Shuttle Radar Topography Mission, Environmental science, Normalized Difference Vegetation Index, Moderate-resolution imaging spectroradiometer, Water content, Linear regression, Albedo (alchemy), Moisture, Remote sensing, Digital elevation model, Precipitation, Climate change, Meteorology, Geology, Geography, Mathematics, Satellite, Statistics, Oceanography, Art history, Aerospace engineering, Engineering, Performance art, Art, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293069235 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| ids.openalex | https://openalex.org/W4293069235 |
| fwci | 0.39313747 |
| type | article |
| title | SPATIAL DOWNSCALING OF SMAP SOIL MOISTURE USING THE MODIS AND SRTM OBSERVATIONS |
| biblio.issue | |
| biblio.volume | XLIII-B3-2022 |
| biblio.last_page | 938 |
| biblio.first_page | 933 |
| topics[0].id | https://openalex.org/T11312 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Moisture and Remote Sensing |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T10535 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9918000102043152 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2308 |
| topics[2].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[2].display_name | Landslides and related hazards |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41156917 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8279180526733398 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q682831 |
| concepts[0].display_name | Downscaling |
| concepts[1].id | https://openalex.org/C184149073 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8035541772842407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q965136 |
| concepts[1].display_name | Shuttle Radar Topography Mission |
| concepts[2].id | https://openalex.org/C39432304 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7678530216217041 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[2].display_name | Environmental science |
| concepts[3].id | https://openalex.org/C1549246 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7553820610046387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q718775 |
| concepts[3].display_name | Normalized Difference Vegetation Index |
| concepts[4].id | https://openalex.org/C2777007095 |
| concepts[4].level | 3 |
| concepts[4].score | 0.655543863773346 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q676840 |
| concepts[4].display_name | Moderate-resolution imaging spectroradiometer |
| concepts[5].id | https://openalex.org/C24939127 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6420985460281372 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q373499 |
| concepts[5].display_name | Water content |
| concepts[6].id | https://openalex.org/C48921125 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4876827001571655 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[6].display_name | Linear regression |
| concepts[7].id | https://openalex.org/C195886398 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4297577142715454 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2110050 |
| concepts[7].display_name | Albedo (alchemy) |
| concepts[8].id | https://openalex.org/C176864760 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4284916818141937 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q217651 |
| concepts[8].display_name | Moisture |
| concepts[9].id | https://openalex.org/C62649853 |
| concepts[9].level | 1 |
| concepts[9].score | 0.31009340286254883 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[9].display_name | Remote sensing |
| concepts[10].id | https://openalex.org/C181843262 |
| concepts[10].level | 2 |
| concepts[10].score | 0.2769883871078491 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q640492 |
| concepts[10].display_name | Digital elevation model |
| concepts[11].id | https://openalex.org/C107054158 |
| concepts[11].level | 2 |
| concepts[11].score | 0.23626402020454407 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[11].display_name | Precipitation |
| concepts[12].id | https://openalex.org/C132651083 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23190408945083618 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7942 |
| concepts[12].display_name | Climate change |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19907525181770325 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.13412225246429443 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1317615807056427 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12717199325561523 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C19269812 |
| concepts[17].level | 2 |
| concepts[17].score | 0.09096163511276245 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[17].display_name | Satellite |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C111368507 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[19].display_name | Oceanography |
| concepts[20].id | https://openalex.org/C52119013 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q50637 |
| concepts[20].display_name | Art history |
| concepts[21].id | https://openalex.org/C146978453 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[21].display_name | Aerospace engineering |
| concepts[22].id | https://openalex.org/C127413603 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[22].display_name | Engineering |
| concepts[23].id | https://openalex.org/C554144382 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q213156 |
| concepts[23].display_name | Performance art |
| concepts[24].id | https://openalex.org/C142362112 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[24].display_name | Art |
| concepts[25].id | https://openalex.org/C187320778 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[25].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/downscaling |
| keywords[0].score | 0.8279180526733398 |
| keywords[0].display_name | Downscaling |
| keywords[1].id | https://openalex.org/keywords/shuttle-radar-topography-mission |
| keywords[1].score | 0.8035541772842407 |
| keywords[1].display_name | Shuttle Radar Topography Mission |
| keywords[2].id | https://openalex.org/keywords/environmental-science |
| keywords[2].score | 0.7678530216217041 |
| keywords[2].display_name | Environmental science |
| keywords[3].id | https://openalex.org/keywords/normalized-difference-vegetation-index |
| keywords[3].score | 0.7553820610046387 |
| keywords[3].display_name | Normalized Difference Vegetation Index |
| keywords[4].id | https://openalex.org/keywords/moderate-resolution-imaging-spectroradiometer |
| keywords[4].score | 0.655543863773346 |
| keywords[4].display_name | Moderate-resolution imaging spectroradiometer |
| keywords[5].id | https://openalex.org/keywords/water-content |
| keywords[5].score | 0.6420985460281372 |
| keywords[5].display_name | Water content |
| keywords[6].id | https://openalex.org/keywords/linear-regression |
| keywords[6].score | 0.4876827001571655 |
| keywords[6].display_name | Linear regression |
| keywords[7].id | https://openalex.org/keywords/albedo |
| keywords[7].score | 0.4297577142715454 |
| keywords[7].display_name | Albedo (alchemy) |
| keywords[8].id | https://openalex.org/keywords/moisture |
| keywords[8].score | 0.4284916818141937 |
| keywords[8].display_name | Moisture |
| keywords[9].id | https://openalex.org/keywords/remote-sensing |
| keywords[9].score | 0.31009340286254883 |
| keywords[9].display_name | Remote sensing |
| keywords[10].id | https://openalex.org/keywords/digital-elevation-model |
| keywords[10].score | 0.2769883871078491 |
| keywords[10].display_name | Digital elevation model |
| keywords[11].id | https://openalex.org/keywords/precipitation |
| keywords[11].score | 0.23626402020454407 |
| keywords[11].display_name | Precipitation |
| keywords[12].id | https://openalex.org/keywords/climate-change |
| keywords[12].score | 0.23190408945083618 |
| keywords[12].display_name | Climate change |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.19907525181770325 |
| keywords[13].display_name | Meteorology |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.13412225246429443 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.1317615807056427 |
| keywords[15].display_name | Geography |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.12717199325561523 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/satellite |
| keywords[17].score | 0.09096163511276245 |
| keywords[17].display_name | Satellite |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| locations[1].id | pmh:oai:doaj.org/article:b443f6c11440442fb36cbe9ef4f09566 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B3-2022, Pp 933-938 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/b443f6c11440442fb36cbe9ef4f09566 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084404480 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1289-8797 |
| authorships[0].author.display_name | Jayantrao Mohite |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55215948 |
| authorships[0].affiliations[0].raw_affiliation_string | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[0].institutions[0].id | https://openalex.org/I55215948 |
| authorships[0].institutions[0].ror | https://ror.org/01b9n8m42 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210086519, https://openalex.org/I55215948 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Tata Consultancy Services (India) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. D. Mohite |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[1].author.id | https://openalex.org/A5041057249 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5982-4432 |
| authorships[1].author.display_name | Suryakant Sawant |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I55215948 |
| authorships[1].affiliations[0].raw_affiliation_string | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[1].institutions[0].id | https://openalex.org/I55215948 |
| authorships[1].institutions[0].ror | https://ror.org/01b9n8m42 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210086519, https://openalex.org/I55215948 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Tata Consultancy Services (India) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. A. Sawant |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[2].author.id | https://openalex.org/A5047095985 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | A. Pandit |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55215948 |
| authorships[2].affiliations[0].raw_affiliation_string | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[2].institutions[0].id | https://openalex.org/I55215948 |
| authorships[2].institutions[0].ror | https://ror.org/01b9n8m42 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210086519, https://openalex.org/I55215948 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Tata Consultancy Services (India) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A. Pandit |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | TCS Research and Innovation, Tata Consultancy Services, Mumbai, India |
| authorships[3].author.id | https://openalex.org/A5036037319 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | S. Pappula |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I55215948 |
| authorships[3].affiliations[0].raw_affiliation_string | TCS Research and Innovation, Tata Consultancy Services, Hyderabad, India |
| authorships[3].institutions[0].id | https://openalex.org/I55215948 |
| authorships[3].institutions[0].ror | https://ror.org/01b9n8m42 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210086519, https://openalex.org/I55215948 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Tata Consultancy Services (India) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | S. Pappula |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | TCS Research and Innovation, Tata Consultancy Services, Hyderabad, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SPATIAL DOWNSCALING OF SMAP SOIL MOISTURE USING THE MODIS AND SRTM OBSERVATIONS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11312 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Moisture and Remote Sensing |
| related_works | https://openalex.org/W2394436593, https://openalex.org/W3013458534, https://openalex.org/W3010558748, https://openalex.org/W3183766399, https://openalex.org/W2185517458, https://openalex.org/W2736619525, https://openalex.org/W2118050283, https://openalex.org/W2069466744, https://openalex.org/W1990887063, https://openalex.org/W2112487230 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| primary_location.id | doi:10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/933/2022/isprs-archives-XLIII-B3-2022-933-2022.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-933-2022 |
| publication_date | 2022-05-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1980313823, https://openalex.org/W2157005989, https://openalex.org/W1500251030, https://openalex.org/W2100351139, https://openalex.org/W2120195465, https://openalex.org/W2146149230, https://openalex.org/W2084704368, https://openalex.org/W2725897987, https://openalex.org/W2081653580, https://openalex.org/W6649687625, https://openalex.org/W2111038353, https://openalex.org/W2132549823, https://openalex.org/W2069294570, https://openalex.org/W2148691574, https://openalex.org/W2777003700, https://openalex.org/W2187365236, https://openalex.org/W2167731682, https://openalex.org/W2166609657, https://openalex.org/W3047543070, https://openalex.org/W2599868771, https://openalex.org/W2108651704, https://openalex.org/W6667923477, https://openalex.org/W2028979033, https://openalex.org/W2972084277, https://openalex.org/W1980412015, https://openalex.org/W2034956981, https://openalex.org/W6738263309, https://openalex.org/W2509917403, https://openalex.org/W1997851590, https://openalex.org/W1974948123, https://openalex.org/W4316591735, https://openalex.org/W1988512587, https://openalex.org/W2015066808, https://openalex.org/W2069414124, https://openalex.org/W4251338761 |
| referenced_works_count | 35 |
| abstract_inverted_index.3 | 56 |
| abstract_inverted_index.a | 89, 99, 117, 175, 241 |
| abstract_inverted_index.%. | 248 |
| abstract_inverted_index.(1 | 226 |
| abstract_inverted_index.In | 213 |
| abstract_inverted_index.R2 | 194 |
| abstract_inverted_index.as | 98, 113 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 116 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 4, 11, 122, 128, 137, 159, 177, 195 |
| abstract_inverted_index.on | 187 |
| abstract_inverted_index.to | 55, 58, 133, 155, 221, 246 |
| abstract_inverted_index.(36 | 19 |
| abstract_inverted_index.7.4 | 247 |
| abstract_inverted_index.MLR | 166 |
| abstract_inverted_index.RFR | 164, 204 |
| abstract_inverted_index.SVR | 168 |
| abstract_inverted_index.The | 1, 35, 126 |
| abstract_inverted_index.and | 28, 79, 108, 146, 161, 167, 171, 179, 199, 209, 233 |
| abstract_inverted_index.day | 91 |
| abstract_inverted_index.for | 66, 120, 169, 205 |
| abstract_inverted_index.km) | 20 |
| abstract_inverted_index.the | 8, 22, 42, 60, 67, 135, 157, 184 |
| abstract_inverted_index.was | 37, 53, 96, 131, 153, 219 |
| abstract_inverted_index.(R2) | 130 |
| abstract_inverted_index.(SM) | 51 |
| abstract_inverted_index.0.76 | 200 |
| abstract_inverted_index.Each | 151 |
| abstract_inverted_index.Jan. | 188 |
| abstract_inverted_index.LST, | 107 |
| abstract_inverted_index.Land | 80 |
| abstract_inverted_index.Mar. | 210 |
| abstract_inverted_index.SMAP | 48, 93, 123 |
| abstract_inverted_index.SRTM | 109 |
| abstract_inverted_index.Soil | 12 |
| abstract_inverted_index.best | 191 |
| abstract_inverted_index.data | 52, 65, 189, 218 |
| abstract_inverted_index.days | 57 |
| abstract_inverted_index.good | 238 |
| abstract_inverted_index.km). | 227 |
| abstract_inverted_index.main | 2 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.soil | 17, 49, 94, 124, 216, 224, 231, 235 |
| abstract_inverted_index.test | 156 |
| abstract_inverted_index.that | 183 |
| abstract_inverted_index.this | 5 |
| abstract_inverted_index.used | 97, 112, 132, 154, 220 |
| abstract_inverted_index.were | 84, 111, 201 |
| abstract_inverted_index.with | 240 |
| abstract_inverted_index.(LST) | 83 |
| abstract_inverted_index.0.61, | 197 |
| abstract_inverted_index.0.73, | 196 |
| abstract_inverted_index.0.75, | 198 |
| abstract_inverted_index.Daily | 47 |
| abstract_inverted_index.Dec., | 207 |
| abstract_inverted_index.Feb., | 208 |
| abstract_inverted_index.Index | 71, 76 |
| abstract_inverted_index.India | 40 |
| abstract_inverted_index.MODIS | 64, 103 |
| abstract_inverted_index.NDVI, | 104 |
| abstract_inverted_index.NDWI, | 105 |
| abstract_inverted_index.Rabi) | 45 |
| abstract_inverted_index.Radar | 30 |
| abstract_inverted_index.Water | 75 |
| abstract_inverted_index.area. | 63 |
| abstract_inverted_index.cover | 59 |
| abstract_inverted_index.model | 185 |
| abstract_inverted_index.study | 6, 36, 62 |
| abstract_inverted_index.three | 90 |
| abstract_inverted_index.using | 21, 203 |
| abstract_inverted_index.while | 193 |
| abstract_inverted_index.(MLR), | 141 |
| abstract_inverted_index.(RFR). | 150 |
| abstract_inverted_index.(SMAP) | 16 |
| abstract_inverted_index.(SRTM) | 33 |
| abstract_inverted_index.(SVR), | 145 |
| abstract_inverted_index.(i.e., | 44 |
| abstract_inverted_index.Active | 14 |
| abstract_inverted_index.during | 41 |
| abstract_inverted_index.entire | 61 |
| abstract_inverted_index.forest | 148 |
| abstract_inverted_index.linear | 139 |
| abstract_inverted_index.method | 152 |
| abstract_inverted_index.models | 181 |
| abstract_inverted_index.random | 147 |
| abstract_inverted_index.season | 46 |
| abstract_inverted_index.showed | 237 |
| abstract_inverted_index.vector | 143 |
| abstract_inverted_index.−9.3 | 245 |
| abstract_inverted_index.(MODIS) | 27 |
| abstract_inverted_index.(NDVI), | 72 |
| abstract_inverted_index.(NDWI), | 77 |
| abstract_inverted_index.Albedo, | 78, 106 |
| abstract_inverted_index.Imaging | 25 |
| abstract_inverted_index.Mission | 32 |
| abstract_inverted_index.Passive | 15 |
| abstract_inverted_index.Shuttle | 29 |
| abstract_inverted_index.Surface | 81 |
| abstract_inverted_index.between | 229, 244 |
| abstract_inverted_index.created | 186 |
| abstract_inverted_index.in-situ | 215, 234 |
| abstract_inverted_index.models, | 211 |
| abstract_inverted_index.models. | 163, 173 |
| abstract_inverted_index.monthly | 160, 170, 178 |
| abstract_inverted_index.ranging | 243 |
| abstract_inverted_index.spatial | 9 |
| abstract_inverted_index.support | 142 |
| abstract_inverted_index.Moderate | 23 |
| abstract_inverted_index.Moisture | 13 |
| abstract_inverted_index.analysis | 119 |
| abstract_inverted_index.attained | 202 |
| abstract_inverted_index.evaluate | 134 |
| abstract_inverted_index.moisture | 18, 50, 95, 217, 225, 232, 236 |
| abstract_inverted_index.obtained | 86 |
| abstract_inverted_index.revealed | 182 |
| abstract_inverted_index.seasonal | 162, 172, 180 |
| abstract_inverted_index.validate | 222 |
| abstract_inverted_index.whereas, | 102 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.addition, | 214 |
| abstract_inverted_index.agreement | 239 |
| abstract_inverted_index.conducted | 38 |
| abstract_inverted_index.dependent | 100 |
| abstract_inverted_index.elevation | 110 |
| abstract_inverted_index.moisture. | 125 |
| abstract_inverted_index.objective | 3 |
| abstract_inverted_index.performed | 190 |
| abstract_inverted_index.products. | 34 |
| abstract_inverted_index.seasonal, | 206 |
| abstract_inverted_index.similarly | 85 |
| abstract_inverted_index.variable, | 101 |
| abstract_inverted_index.variables | 115 |
| abstract_inverted_index.(R2=0.80), | 192 |
| abstract_inverted_index.Comparison | 228 |
| abstract_inverted_index.Difference | 69, 74 |
| abstract_inverted_index.Normalized | 68, 73 |
| abstract_inverted_index.Resolution | 24 |
| abstract_inverted_index.Topography | 31 |
| abstract_inverted_index.Vegetation | 70 |
| abstract_inverted_index.comparison | 176 |
| abstract_inverted_index.composite. | 92 |
| abstract_inverted_index.composited | 54 |
| abstract_inverted_index.difference | 242 |
| abstract_inverted_index.downscaled | 223, 230 |
| abstract_inverted_index.regression | 118, 140, 144, 149 |
| abstract_inverted_index.Temperature | 82 |
| abstract_inverted_index.coefficient | 127 |
| abstract_inverted_index.downscaling | 10, 121 |
| abstract_inverted_index.independent | 114 |
| abstract_inverted_index.performance | 136, 158 |
| abstract_inverted_index.Furthermore, | 174 |
| abstract_inverted_index.constructing | 88 |
| abstract_inverted_index.outperformed | 165 |
| abstract_inverted_index.post-monsoon | 43 |
| abstract_inverted_index.determination | 129 |
| abstract_inverted_index.multi-variate | 138 |
| abstract_inverted_index.respectively. | 212 |
| abstract_inverted_index.Spectroradiometer | 26 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.53911192 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |