Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.gsf.2023.101625
Floods are natural hazards that lead to devastating financial losses and large displacements of people. Flood susceptibility maps can improve mitigation measures according to the specific conditions of a study area. The design of flood susceptibility maps has been enhanced through use of hybrid machine learning and deep learning models. Although these models have achieved better accuracy than traditional models, they are not widely used by stakeholders due to their black-box nature. In this study, we propose the application of an explainable artificial intelligence (XAI) model that incorporates the Shapley additive explanation (SHAP) model to interpret the outcomes of convolutional neural network (CNN) deep learning models, and analyze the impact of variables on flood susceptibility mapping. This study was conducted in Jinju Province, South Korea, which has a long history of flood events. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), which showed a prediction accuracy of 88.4%. SHAP plots showed that land use and various soil attributes significantly affected flood susceptibility in the study area. In light of these findings, we recommend the use of XAI-based models in future flood susceptibility mapping studies to improve interpretations of model outcomes, and build trust among stakeholders during the flood-related decision-making process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.gsf.2023.101625
- OA Status
- hybrid
- Cited By
- 158
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367298578
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367298578Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.gsf.2023.101625Digital Object Identifier
- Title
-
Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-28Full publication date if available
- Authors
-
Biswajeet Pradhan, Saro Lee, Abhirup Dikshit, Hyesu KimList of authors in order
- Landing page
-
https://doi.org/10.1016/j.gsf.2023.101625Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.gsf.2023.101625Direct OA link when available
- Concepts
-
Flood myth, Computer science, Deep learning, Artificial intelligence, Process (computing), Data mining, Machine learning, Water resource management, Environmental science, Geography, Archaeology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
158Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 83, 2024: 58, 2023: 17Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367298578 |
|---|---|
| doi | https://doi.org/10.1016/j.gsf.2023.101625 |
| ids.doi | https://doi.org/10.1016/j.gsf.2023.101625 |
| ids.openalex | https://openalex.org/W4367298578 |
| fwci | 32.07510727 |
| type | article |
| title | Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model |
| biblio.issue | 6 |
| biblio.volume | 14 |
| biblio.last_page | 101625 |
| biblio.first_page | 101625 |
| topics[0].id | https://openalex.org/T10930 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Flood Risk Assessment and Management |
| topics[1].id | https://openalex.org/T11186 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Hydrology and Drought Analysis |
| topics[2].id | https://openalex.org/T10330 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Hydrology and Watershed Management Studies |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C74256435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8104285001754761 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[0].display_name | Flood myth |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5686004161834717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47835391759872437 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4499182105064392 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.44103696942329407 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3456156253814697 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33612632751464844 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C524765639 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3351198434829712 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1501619 |
| concepts[7].display_name | Water resource management |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3158732056617737 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2305297553539276 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C166957645 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[10].display_name | Archaeology |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/flood-myth |
| keywords[0].score | 0.8104285001754761 |
| keywords[0].display_name | Flood myth |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5686004161834717 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.47835391759872437 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4499182105064392 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.44103696942329407 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3456156253814697 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.33612632751464844 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/water-resource-management |
| keywords[7].score | 0.3351198434829712 |
| keywords[7].display_name | Water resource management |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.3158732056617737 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.2305297553539276 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1016/j.gsf.2023.101625 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764860519 |
| locations[0].source.issn | 1674-9871, 2588-9192 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1674-9871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Geoscience Frontiers |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geoscience Frontiers |
| locations[0].landing_page_url | https://doi.org/10.1016/j.gsf.2023.101625 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5059040421 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9863-2054 |
| authorships[0].author.display_name | Biswajeet Pradhan |
| authorships[0].countries | AU, MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[0].affiliations[0].raw_affiliation_string | Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I114017466 |
| authorships[0].affiliations[1].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I114017466 |
| authorships[0].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Technology Sydney |
| authorships[0].institutions[1].id | https://openalex.org/I885383172 |
| authorships[0].institutions[1].ror | https://ror.org/00bw8d226 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I885383172 |
| authorships[0].institutions[1].country_code | MY |
| authorships[0].institutions[1].display_name | National University of Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biswajeet Pradhan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney, Sydney, NSW 2007, Australia, Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5077439959 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0409-8263 |
| authorships[1].author.display_name | Saro Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210142421 |
| authorships[1].affiliations[0].raw_affiliation_string | Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I88761825 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I4210142421 |
| authorships[1].institutions[0].ror | https://ror.org/044k0pw44 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210142421 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Korea Institute of Geoscience and Mineral Resources |
| authorships[1].institutions[1].id | https://openalex.org/I88761825 |
| authorships[1].institutions[1].ror | https://ror.org/000qzf213 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I88761825 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Korea University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Saro Lee |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Resources Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea, Geoscience Data Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), 124 Gwahang-no, Yuseong-gu, Daejeon 34132, South Korea |
| authorships[2].author.id | https://openalex.org/A5058731208 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2876-4080 |
| authorships[2].author.display_name | Abhirup Dikshit |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114017466 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I114017466 |
| authorships[2].institutions[0].ror | https://ror.org/03f0f6041 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114017466 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Technology Sydney |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abhirup Dikshit |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering & IT, University of Technology Sydney, Sydney, NSW 2007, Australia |
| authorships[3].author.id | https://openalex.org/A5101608527 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4639-0273 |
| authorships[3].author.display_name | Hyesu Kim |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I196345858 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea |
| authorships[3].institutions[0].id | https://openalex.org/I196345858 |
| authorships[3].institutions[0].ror | https://ror.org/0227as991 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I196345858 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Chungnam National University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hyesu Kim |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Astronomy, Space Science and Geology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.gsf.2023.101625 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatial flood susceptibility mapping using an explainable artificial intelligence (XAI) model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10930 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Flood Risk Assessment and Management |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W3020755331, https://openalex.org/W2394377911, https://openalex.org/W63519562, https://openalex.org/W4387816319, https://openalex.org/W2611989081, https://openalex.org/W4388268408, https://openalex.org/W4380088563, https://openalex.org/W2016618709, https://openalex.org/W4380075502 |
| cited_by_count | 158 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 83 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 58 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 17 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.gsf.2023.101625 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764860519 |
| best_oa_location.source.issn | 1674-9871, 2588-9192 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1674-9871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Geoscience Frontiers |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geoscience Frontiers |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.gsf.2023.101625 |
| primary_location.id | doi:10.1016/j.gsf.2023.101625 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764860519 |
| primary_location.source.issn | 1674-9871, 2588-9192 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1674-9871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Geoscience Frontiers |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geoscience Frontiers |
| primary_location.landing_page_url | https://doi.org/10.1016/j.gsf.2023.101625 |
| publication_date | 2023-04-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3181256602, https://openalex.org/W2907882001, https://openalex.org/W3005703423, https://openalex.org/W2035354641, https://openalex.org/W2985766090, https://openalex.org/W2072509556, https://openalex.org/W2895196240, https://openalex.org/W2404576049, https://openalex.org/W2903266193, https://openalex.org/W2342485655, https://openalex.org/W6783903821, https://openalex.org/W3037310288, https://openalex.org/W3195433497, https://openalex.org/W3000113736, https://openalex.org/W2610838636, https://openalex.org/W2158698691, https://openalex.org/W2156589291, https://openalex.org/W2996713777, https://openalex.org/W2401869809, https://openalex.org/W2106784335, https://openalex.org/W1981316911, https://openalex.org/W2765742909, https://openalex.org/W3087236291, https://openalex.org/W2027386095, https://openalex.org/W154049821, https://openalex.org/W2112796928, https://openalex.org/W2919115771, https://openalex.org/W2331149499, https://openalex.org/W2606804832, https://openalex.org/W2789282353, https://openalex.org/W2766400859, https://openalex.org/W3173991935, https://openalex.org/W2972629016, https://openalex.org/W6734575198, https://openalex.org/W3093442198, https://openalex.org/W2981078235, https://openalex.org/W2282821441, https://openalex.org/W2286383730, https://openalex.org/W2945976633, https://openalex.org/W2800469141, https://openalex.org/W2487898712, https://openalex.org/W2042315239, https://openalex.org/W1975914988, https://openalex.org/W2917112588, https://openalex.org/W2981051507, https://openalex.org/W2915483120, https://openalex.org/W3003401083, https://openalex.org/W2894920195, https://openalex.org/W3013498854, https://openalex.org/W4206280001, https://openalex.org/W3087676330, https://openalex.org/W4402843978, https://openalex.org/W2594352094, https://openalex.org/W4253460748 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 28, 127, 149 |
| abstract_inverted_index.In | 72, 172 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 120, 168, 184 |
| abstract_inverted_index.of | 13, 27, 33, 42, 79, 98, 110, 130, 152, 174, 181, 193 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 6, 23, 68, 94, 190 |
| abstract_inverted_index.we | 75, 177 |
| abstract_inverted_index.The | 31 |
| abstract_inverted_index.and | 10, 46, 106, 160, 196 |
| abstract_inverted_index.are | 1, 61 |
| abstract_inverted_index.can | 18 |
| abstract_inverted_index.due | 67 |
| abstract_inverted_index.has | 37, 126 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.the | 24, 77, 88, 96, 108, 138, 141, 169, 179, 202 |
| abstract_inverted_index.use | 41, 159, 180 |
| abstract_inverted_index.was | 118, 135 |
| abstract_inverted_index.SHAP | 154 |
| abstract_inverted_index.This | 116 |
| abstract_inverted_index.area | 139 |
| abstract_inverted_index.been | 38 |
| abstract_inverted_index.deep | 47, 103 |
| abstract_inverted_index.have | 53 |
| abstract_inverted_index.land | 158 |
| abstract_inverted_index.lead | 5 |
| abstract_inverted_index.long | 128 |
| abstract_inverted_index.maps | 17, 36 |
| abstract_inverted_index.soil | 162 |
| abstract_inverted_index.than | 57 |
| abstract_inverted_index.that | 4, 86, 157 |
| abstract_inverted_index.they | 60 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.used | 64 |
| abstract_inverted_index.(CNN) | 102 |
| abstract_inverted_index.(XAI) | 84 |
| abstract_inverted_index.Flood | 15 |
| abstract_inverted_index.Jinju | 121 |
| abstract_inverted_index.Model | 133 |
| abstract_inverted_index.South | 123 |
| abstract_inverted_index.among | 199 |
| abstract_inverted_index.area. | 30, 171 |
| abstract_inverted_index.build | 197 |
| abstract_inverted_index.curve | 145 |
| abstract_inverted_index.flood | 34, 113, 131, 166, 186 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.light | 173 |
| abstract_inverted_index.model | 85, 93, 194 |
| abstract_inverted_index.plots | 155 |
| abstract_inverted_index.study | 29, 117, 170 |
| abstract_inverted_index.their | 69 |
| abstract_inverted_index.these | 51, 175 |
| abstract_inverted_index.trust | 198 |
| abstract_inverted_index.under | 140 |
| abstract_inverted_index.using | 137 |
| abstract_inverted_index.which | 125, 147 |
| abstract_inverted_index.(SHAP) | 92 |
| abstract_inverted_index.88.4%. | 153 |
| abstract_inverted_index.Floods | 0 |
| abstract_inverted_index.Korea, | 124 |
| abstract_inverted_index.better | 55 |
| abstract_inverted_index.design | 32 |
| abstract_inverted_index.during | 201 |
| abstract_inverted_index.future | 185 |
| abstract_inverted_index.hybrid | 43 |
| abstract_inverted_index.impact | 109 |
| abstract_inverted_index.losses | 9 |
| abstract_inverted_index.models | 52, 183 |
| abstract_inverted_index.neural | 100 |
| abstract_inverted_index.showed | 148, 156 |
| abstract_inverted_index.study, | 74 |
| abstract_inverted_index.widely | 63 |
| abstract_inverted_index.Shapley | 89 |
| abstract_inverted_index.analyze | 107 |
| abstract_inverted_index.events. | 132 |
| abstract_inverted_index.hazards | 3 |
| abstract_inverted_index.history | 129 |
| abstract_inverted_index.improve | 19, 191 |
| abstract_inverted_index.machine | 44 |
| abstract_inverted_index.mapping | 188 |
| abstract_inverted_index.models, | 59, 105 |
| abstract_inverted_index.models. | 49 |
| abstract_inverted_index.natural | 2 |
| abstract_inverted_index.nature. | 71 |
| abstract_inverted_index.network | 101 |
| abstract_inverted_index.people. | 14 |
| abstract_inverted_index.propose | 76 |
| abstract_inverted_index.studies | 189 |
| abstract_inverted_index.through | 40 |
| abstract_inverted_index.various | 161 |
| abstract_inverted_index.(AUROC), | 146 |
| abstract_inverted_index.Although | 50 |
| abstract_inverted_index.accuracy | 56, 151 |
| abstract_inverted_index.achieved | 54 |
| abstract_inverted_index.additive | 90 |
| abstract_inverted_index.affected | 165 |
| abstract_inverted_index.enhanced | 39 |
| abstract_inverted_index.learning | 45, 48, 104 |
| abstract_inverted_index.mapping. | 115 |
| abstract_inverted_index.measures | 21 |
| abstract_inverted_index.outcomes | 97 |
| abstract_inverted_index.process. | 205 |
| abstract_inverted_index.receiver | 142 |
| abstract_inverted_index.specific | 25 |
| abstract_inverted_index.Province, | 122 |
| abstract_inverted_index.XAI-based | 182 |
| abstract_inverted_index.according | 22 |
| abstract_inverted_index.black-box | 70 |
| abstract_inverted_index.conducted | 119 |
| abstract_inverted_index.evaluated | 136 |
| abstract_inverted_index.financial | 8 |
| abstract_inverted_index.findings, | 176 |
| abstract_inverted_index.interpret | 95 |
| abstract_inverted_index.operating | 143 |
| abstract_inverted_index.outcomes, | 195 |
| abstract_inverted_index.recommend | 178 |
| abstract_inverted_index.variables | 111 |
| abstract_inverted_index.artificial | 82 |
| abstract_inverted_index.attributes | 163 |
| abstract_inverted_index.conditions | 26 |
| abstract_inverted_index.mitigation | 20 |
| abstract_inverted_index.prediction | 150 |
| abstract_inverted_index.application | 78 |
| abstract_inverted_index.devastating | 7 |
| abstract_inverted_index.explainable | 81 |
| abstract_inverted_index.explanation | 91 |
| abstract_inverted_index.performance | 134 |
| abstract_inverted_index.traditional | 58 |
| abstract_inverted_index.incorporates | 87 |
| abstract_inverted_index.intelligence | 83 |
| abstract_inverted_index.stakeholders | 66, 200 |
| abstract_inverted_index.convolutional | 99 |
| abstract_inverted_index.displacements | 12 |
| abstract_inverted_index.flood-related | 203 |
| abstract_inverted_index.significantly | 164 |
| abstract_inverted_index.characteristic | 144 |
| abstract_inverted_index.susceptibility | 16, 35, 114, 167, 187 |
| abstract_inverted_index.decision-making | 204 |
| abstract_inverted_index.interpretations | 192 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5077439959 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210142421, https://openalex.org/I88761825 |
| citation_normalized_percentile.value | 0.99902982 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |