Spatial prediction of InSAR-derived hillslope velocities via deep learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s10064-025-04161-x
Spatiotemporal patterns of earth surface deformation are influenced by a combination of static and dynamic environmental characteristics specific to any landscape of interest. Nowadays, these patterns can be captured for larger areas using Interferometric Synthetic-Aperture Radar (InSAR) technologies and yet, their spatial prediction has been poorly investigated so far. Here, we initially compute the InSAR-derived line-of-sight hillslope velocities (V LOS ) and calculate their mean (ranging from 0 to ~ 30 mm/y) and maximum (ranging from 0 to ~ 60 mm/y) values per Slope Units (SUs). These separately constitute the response variables to be modelled through a series of deep learning routines: i ) a basic neural network (Multi-Layer Perceptron), ii ) a Graph Convolutional Network implemented to capture spatial dependence among neighbouring SUs, and iii ) an Edge-Featured Graph Attention Network sensitive not only to the interdependence brought by the SU positions in space but also to reciprocal terrain characteristics. We assessed the model performance for both models via Mean Absolute Error (MAE), r-squared (R 2 ), and Pearson Correlation Coefficient (PCC). The Edge-Featured Graph Attention Network model produced the best performance. The result for the first model targeting the mean V LOS are 4.75 mm/y, 0.63, and 0.79 for MAE, R 2 , and PCC, respectively. As for the second model, targeting the maximum V LOS , these are 19.52 mm/y, 0.55 and 0.75. We also showcased interpretable multivariate models, where the contribution of each predictor to the InSAR velocities is summarized and interpreted. This represent a clear example where InSAR-derived hillslope velocities are accurately estimated at regional scales, thus setting up the scene for further advances towards space-time regional deformation modelling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10064-025-04161-x
- OA Status
- hybrid
- Cited By
- 3
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407558659
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407558659Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10064-025-04161-xDigital Object Identifier
- Title
-
Spatial prediction of InSAR-derived hillslope velocities via deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-14Full publication date if available
- Authors
-
Jun He, Hakan Tanyaş, Ashok Dahal, Da Huang, Luigi LombardoList of authors in order
- Landing page
-
https://doi.org/10.1007/s10064-025-04161-xPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s10064-025-04161-xDirect OA link when available
- Concepts
-
Nature Conservation, Interferometric synthetic aperture radar, Geology, Spatial variability, Remote sensing, Synthetic aperture radar, Ecology, Mathematics, Statistics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407558659 |
|---|---|
| doi | https://doi.org/10.1007/s10064-025-04161-x |
| ids.doi | https://doi.org/10.1007/s10064-025-04161-x |
| ids.openalex | https://openalex.org/W4407558659 |
| fwci | 19.17859362 |
| type | article |
| title | Spatial prediction of InSAR-derived hillslope velocities via deep learning |
| awards[0].id | https://openalex.org/G1881431884 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 42277187 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 84 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10535 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2308 |
| topics[0].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[0].display_name | Landslides and related hazards |
| topics[1].id | https://openalex.org/T10801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[2].id | https://openalex.org/T10644 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Cryospheric studies and observations |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2790 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3590 |
| apc_paid.value | 2790 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3590 |
| concepts[0].id | https://openalex.org/C2777952078 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8120176196098328 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q28446295 |
| concepts[0].display_name | Nature Conservation |
| concepts[1].id | https://openalex.org/C22286887 |
| concepts[1].level | 3 |
| concepts[1].score | 0.670428991317749 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1666056 |
| concepts[1].display_name | Interferometric synthetic aperture radar |
| concepts[2].id | https://openalex.org/C127313418 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5891257524490356 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[2].display_name | Geology |
| concepts[3].id | https://openalex.org/C94747663 |
| concepts[3].level | 2 |
| concepts[3].score | 0.41761380434036255 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7574086 |
| concepts[3].display_name | Spatial variability |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40760326385498047 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C87360688 |
| concepts[5].level | 2 |
| concepts[5].score | 0.18237531185150146 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[5].display_name | Synthetic aperture radar |
| concepts[6].id | https://openalex.org/C18903297 |
| concepts[6].level | 1 |
| concepts[6].score | 0.12124183773994446 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[6].display_name | Ecology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11195182800292969 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08064091205596924 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06226363778114319 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/nature-conservation |
| keywords[0].score | 0.8120176196098328 |
| keywords[0].display_name | Nature Conservation |
| keywords[1].id | https://openalex.org/keywords/interferometric-synthetic-aperture-radar |
| keywords[1].score | 0.670428991317749 |
| keywords[1].display_name | Interferometric synthetic aperture radar |
| keywords[2].id | https://openalex.org/keywords/geology |
| keywords[2].score | 0.5891257524490356 |
| keywords[2].display_name | Geology |
| keywords[3].id | https://openalex.org/keywords/spatial-variability |
| keywords[3].score | 0.41761380434036255 |
| keywords[3].display_name | Spatial variability |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.40760326385498047 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[5].score | 0.18237531185150146 |
| keywords[5].display_name | Synthetic aperture radar |
| keywords[6].id | https://openalex.org/keywords/ecology |
| keywords[6].score | 0.12124183773994446 |
| keywords[6].display_name | Ecology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.11195182800292969 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.08064091205596924 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.06226363778114319 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1007/s10064-025-04161-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S184406644 |
| locations[0].source.issn | 1435-9529, 1435-9537 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1435-9529 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Bulletin of Engineering Geology and the Environment |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bulletin of Engineering Geology and the Environment |
| locations[0].landing_page_url | https://doi.org/10.1007/s10064-025-04161-x |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056741076 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4189-2474 |
| authorships[0].author.display_name | Jun He |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184843921 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China |
| authorships[0].institutions[0].id | https://openalex.org/I184843921 |
| authorships[0].institutions[0].ror | https://ror.org/018hded08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184843921 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun He |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China |
| authorships[1].author.id | https://openalex.org/A5043652569 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0609-2140 |
| authorships[1].author.display_name | Hakan Tanyaş |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I94624287 |
| authorships[1].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | University of Twente |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hakan Tanyas |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| authorships[2].author.id | https://openalex.org/A5086534279 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3269-5575 |
| authorships[2].author.display_name | Ashok Dahal |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I94624287 |
| authorships[2].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | University of Twente |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ashok Dahal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| authorships[3].author.id | https://openalex.org/A5032533539 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2795-1354 |
| authorships[3].author.display_name | Da Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25355098 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Civil Engineering and Geomatics, Chang'an University, Xi'an, 710064, China |
| authorships[3].institutions[0].id | https://openalex.org/I25355098 |
| authorships[3].institutions[0].ror | https://ror.org/05mxya461 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25355098 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chang'an University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Da Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Civil Engineering and Geomatics, Chang'an University, Xi'an, 710064, China |
| authorships[4].author.id | https://openalex.org/A5058353143 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4348-7288 |
| authorships[4].author.display_name | Luigi Lombardo |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I94624287 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| authorships[4].institutions[0].id | https://openalex.org/I94624287 |
| authorships[4].institutions[0].ror | https://ror.org/006hf6230 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I94624287 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | University of Twente |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Luigi Lombardo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, Enschede, 7500, AE, Netherlands |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s10064-025-04161-x |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatial prediction of InSAR-derived hillslope velocities via deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10535 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2308 |
| primary_topic.subfield.display_name | Management, Monitoring, Policy and Law |
| primary_topic.display_name | Landslides and related hazards |
| related_works | https://openalex.org/W2790032735, https://openalex.org/W2373310320, https://openalex.org/W2781934594, https://openalex.org/W4384163768, https://openalex.org/W4385499758, https://openalex.org/W4400088992, https://openalex.org/W2387499565, https://openalex.org/W4382365962, https://openalex.org/W2767118615, https://openalex.org/W2312471829 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10064-025-04161-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S184406644 |
| best_oa_location.source.issn | 1435-9529, 1435-9537 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1435-9529 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Bulletin of Engineering Geology and the Environment |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bulletin of Engineering Geology and the Environment |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10064-025-04161-x |
| primary_location.id | doi:10.1007/s10064-025-04161-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S184406644 |
| primary_location.source.issn | 1435-9529, 1435-9537 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1435-9529 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Bulletin of Engineering Geology and the Environment |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bulletin of Engineering Geology and the Environment |
| primary_location.landing_page_url | https://doi.org/10.1007/s10064-025-04161-x |
| publication_date | 2025-02-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2554357049, https://openalex.org/W2885995970, https://openalex.org/W3177995050, https://openalex.org/W3017107753, https://openalex.org/W2062430377, https://openalex.org/W2152657318, https://openalex.org/W3048444358, https://openalex.org/W3125763521, https://openalex.org/W2924537997, https://openalex.org/W3180748560, https://openalex.org/W3097894967, https://openalex.org/W4366086142, https://openalex.org/W2619251816, https://openalex.org/W4213369865, https://openalex.org/W3178220731, https://openalex.org/W4229045613, https://openalex.org/W2092639368, https://openalex.org/W2898734944, https://openalex.org/W2044896177, https://openalex.org/W2146016555, https://openalex.org/W4322490656, https://openalex.org/W2080859850, https://openalex.org/W3123315714, https://openalex.org/W2145475762, https://openalex.org/W2991800487, https://openalex.org/W3094464539, https://openalex.org/W4283640578, https://openalex.org/W3210741436, https://openalex.org/W2067691769, https://openalex.org/W2989349076, https://openalex.org/W4390383581, https://openalex.org/W6948378254, https://openalex.org/W4404421243, https://openalex.org/W4386509223, https://openalex.org/W3135436966, https://openalex.org/W4213087179, https://openalex.org/W4382809718, https://openalex.org/W3188279976, https://openalex.org/W4396641465, https://openalex.org/W3138633680, https://openalex.org/W4389333602, https://openalex.org/W4392741075, https://openalex.org/W1600439578, https://openalex.org/W4206239808, https://openalex.org/W4399356924, https://openalex.org/W2171769281, https://openalex.org/W2126822776, https://openalex.org/W2026796366, https://openalex.org/W3077930651, https://openalex.org/W2984550275, https://openalex.org/W4288465880, https://openalex.org/W4389636019, https://openalex.org/W1990446846, https://openalex.org/W3008089569, https://openalex.org/W3201572672, https://openalex.org/W4225750988, https://openalex.org/W4310080460, https://openalex.org/W2907992533, https://openalex.org/W2102842957, https://openalex.org/W2528353207, https://openalex.org/W4390777569, https://openalex.org/W2976715433, https://openalex.org/W1983513512, https://openalex.org/W4220937924, https://openalex.org/W4283525528, https://openalex.org/W4394580317, https://openalex.org/W1980324470, https://openalex.org/W2031467327 |
| referenced_works_count | 68 |
| abstract_inverted_index.) | 61, 104, 112, 127 |
| abstract_inverted_index., | 205, 219 |
| abstract_inverted_index.0 | 68, 77 |
| abstract_inverted_index.2 | 167, 204 |
| abstract_inverted_index.R | 203 |
| abstract_inverted_index.V | 193, 217 |
| abstract_inverted_index.a | 10, 97, 105, 113, 249 |
| abstract_inverted_index.i | 103 |
| abstract_inverted_index.~ | 70, 79 |
| abstract_inverted_index.(R | 166 |
| abstract_inverted_index.(V | 59 |
| abstract_inverted_index.), | 168 |
| abstract_inverted_index.30 | 71 |
| abstract_inverted_index.60 | 80 |
| abstract_inverted_index.As | 209 |
| abstract_inverted_index.SU | 142 |
| abstract_inverted_index.We | 152, 227 |
| abstract_inverted_index.an | 128 |
| abstract_inverted_index.at | 259 |
| abstract_inverted_index.be | 28, 94 |
| abstract_inverted_index.by | 9, 140 |
| abstract_inverted_index.ii | 111 |
| abstract_inverted_index.in | 144 |
| abstract_inverted_index.is | 243 |
| abstract_inverted_index.of | 3, 12, 22, 99, 236 |
| abstract_inverted_index.so | 48 |
| abstract_inverted_index.to | 19, 69, 78, 93, 118, 136, 148, 239 |
| abstract_inverted_index.up | 264 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.LOS | 60, 194, 218 |
| abstract_inverted_index.The | 174, 184 |
| abstract_inverted_index.and | 14, 39, 62, 73, 125, 169, 199, 206, 225, 245 |
| abstract_inverted_index.any | 20 |
| abstract_inverted_index.are | 7, 195, 221, 256 |
| abstract_inverted_index.but | 146 |
| abstract_inverted_index.can | 27 |
| abstract_inverted_index.for | 30, 157, 186, 201, 210, 267 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.iii | 126 |
| abstract_inverted_index.not | 134 |
| abstract_inverted_index.per | 83 |
| abstract_inverted_index.the | 54, 90, 137, 141, 154, 181, 187, 191, 211, 215, 234, 240, 265 |
| abstract_inverted_index.via | 160 |
| abstract_inverted_index.0.55 | 224 |
| abstract_inverted_index.0.79 | 200 |
| abstract_inverted_index.4.75 | 196 |
| abstract_inverted_index.MAE, | 202 |
| abstract_inverted_index.Mean | 161 |
| abstract_inverted_index.PCC, | 207 |
| abstract_inverted_index.SUs, | 124 |
| abstract_inverted_index.This | 247 |
| abstract_inverted_index.also | 147, 228 |
| abstract_inverted_index.been | 45 |
| abstract_inverted_index.best | 182 |
| abstract_inverted_index.both | 158 |
| abstract_inverted_index.deep | 100 |
| abstract_inverted_index.each | 237 |
| abstract_inverted_index.far. | 49 |
| abstract_inverted_index.from | 67, 76 |
| abstract_inverted_index.mean | 65, 192 |
| abstract_inverted_index.only | 135 |
| abstract_inverted_index.thus | 262 |
| abstract_inverted_index.yet, | 40 |
| abstract_inverted_index.0.63, | 198 |
| abstract_inverted_index.0.75. | 226 |
| abstract_inverted_index.19.52 | 222 |
| abstract_inverted_index.Error | 163 |
| abstract_inverted_index.Graph | 114, 130, 176 |
| abstract_inverted_index.Here, | 50 |
| abstract_inverted_index.InSAR | 241 |
| abstract_inverted_index.Radar | 36 |
| abstract_inverted_index.Slope | 84 |
| abstract_inverted_index.These | 87 |
| abstract_inverted_index.Units | 85 |
| abstract_inverted_index.among | 122 |
| abstract_inverted_index.areas | 32 |
| abstract_inverted_index.basic | 106 |
| abstract_inverted_index.clear | 250 |
| abstract_inverted_index.earth | 4 |
| abstract_inverted_index.first | 188 |
| abstract_inverted_index.mm/y) | 72, 81 |
| abstract_inverted_index.mm/y, | 197, 223 |
| abstract_inverted_index.model | 155, 179, 189 |
| abstract_inverted_index.scene | 266 |
| abstract_inverted_index.space | 145 |
| abstract_inverted_index.their | 41, 64 |
| abstract_inverted_index.these | 25, 220 |
| abstract_inverted_index.using | 33 |
| abstract_inverted_index.where | 233, 252 |
| abstract_inverted_index.(MAE), | 164 |
| abstract_inverted_index.(PCC). | 173 |
| abstract_inverted_index.(SUs). | 86 |
| abstract_inverted_index.larger | 31 |
| abstract_inverted_index.model, | 213 |
| abstract_inverted_index.models | 159 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.poorly | 46 |
| abstract_inverted_index.result | 185 |
| abstract_inverted_index.second | 212 |
| abstract_inverted_index.series | 98 |
| abstract_inverted_index.static | 13 |
| abstract_inverted_index.values | 82 |
| abstract_inverted_index.(InSAR) | 37 |
| abstract_inverted_index.Network | 116, 132, 178 |
| abstract_inverted_index.Pearson | 170 |
| abstract_inverted_index.brought | 139 |
| abstract_inverted_index.capture | 119 |
| abstract_inverted_index.compute | 53 |
| abstract_inverted_index.dynamic | 15 |
| abstract_inverted_index.example | 251 |
| abstract_inverted_index.further | 268 |
| abstract_inverted_index.maximum | 74, 216 |
| abstract_inverted_index.models, | 232 |
| abstract_inverted_index.network | 108 |
| abstract_inverted_index.scales, | 261 |
| abstract_inverted_index.setting | 263 |
| abstract_inverted_index.spatial | 42, 120 |
| abstract_inverted_index.surface | 5 |
| abstract_inverted_index.terrain | 150 |
| abstract_inverted_index.through | 96 |
| abstract_inverted_index.towards | 270 |
| abstract_inverted_index.(ranging | 66, 75 |
| abstract_inverted_index.Absolute | 162 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.advances | 269 |
| abstract_inverted_index.assessed | 153 |
| abstract_inverted_index.captured | 29 |
| abstract_inverted_index.learning | 101 |
| abstract_inverted_index.modelled | 95 |
| abstract_inverted_index.patterns | 2, 26 |
| abstract_inverted_index.produced | 180 |
| abstract_inverted_index.regional | 260, 272 |
| abstract_inverted_index.response | 91 |
| abstract_inverted_index.specific | 18 |
| abstract_inverted_index.Attention | 131, 177 |
| abstract_inverted_index.Nowadays, | 24 |
| abstract_inverted_index.calculate | 63 |
| abstract_inverted_index.estimated | 258 |
| abstract_inverted_index.hillslope | 57, 254 |
| abstract_inverted_index.initially | 52 |
| abstract_inverted_index.interest. | 23 |
| abstract_inverted_index.landscape | 21 |
| abstract_inverted_index.positions | 143 |
| abstract_inverted_index.predictor | 238 |
| abstract_inverted_index.r-squared | 165 |
| abstract_inverted_index.represent | 248 |
| abstract_inverted_index.routines: | 102 |
| abstract_inverted_index.sensitive | 133 |
| abstract_inverted_index.showcased | 229 |
| abstract_inverted_index.targeting | 190, 214 |
| abstract_inverted_index.variables | 92 |
| abstract_inverted_index.accurately | 257 |
| abstract_inverted_index.constitute | 89 |
| abstract_inverted_index.dependence | 121 |
| abstract_inverted_index.influenced | 8 |
| abstract_inverted_index.modelling. | 274 |
| abstract_inverted_index.prediction | 43 |
| abstract_inverted_index.reciprocal | 149 |
| abstract_inverted_index.separately | 88 |
| abstract_inverted_index.space-time | 271 |
| abstract_inverted_index.summarized | 244 |
| abstract_inverted_index.velocities | 58, 242, 255 |
| abstract_inverted_index.Coefficient | 172 |
| abstract_inverted_index.Correlation | 171 |
| abstract_inverted_index.combination | 11 |
| abstract_inverted_index.deformation | 6, 273 |
| abstract_inverted_index.implemented | 117 |
| abstract_inverted_index.performance | 156 |
| abstract_inverted_index.(Multi-Layer | 109 |
| abstract_inverted_index.Perceptron), | 110 |
| abstract_inverted_index.contribution | 235 |
| abstract_inverted_index.interpreted. | 246 |
| abstract_inverted_index.investigated | 47 |
| abstract_inverted_index.multivariate | 231 |
| abstract_inverted_index.neighbouring | 123 |
| abstract_inverted_index.performance. | 183 |
| abstract_inverted_index.technologies | 38 |
| abstract_inverted_index.Convolutional | 115 |
| abstract_inverted_index.Edge-Featured | 129, 175 |
| abstract_inverted_index.InSAR-derived | 55, 253 |
| abstract_inverted_index.environmental | 16 |
| abstract_inverted_index.interpretable | 230 |
| abstract_inverted_index.line-of-sight | 56 |
| abstract_inverted_index.respectively. | 208 |
| abstract_inverted_index.Spatiotemporal | 1 |
| abstract_inverted_index.Interferometric | 34 |
| abstract_inverted_index.characteristics | 17 |
| abstract_inverted_index.interdependence | 138 |
| abstract_inverted_index.characteristics. | 151 |
| abstract_inverted_index.Synthetic-Aperture | 35 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.97103648 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |