SPATIAL-SPECTRAL UNMIXING OF HYPERSPECTRAL DATA FOR DETECTION AND ANALYSIS OF ASTROPHYSICAL SOURCES WITH THE MUSE INSTRUMENT Article Swipe
YOU?
·
· 2014
· Open Access
·
Detection and analysis of astrophysical sources from the forthcoming MUSE instrument is of greatest challenge mainly due to the high noise level and the three-dimensional translation variant blur effect of MUSE data. In this work, we use some realistic hypotheses of MUSE to reformulate the data convolution model into a set of linear mixing models corresponding to different, disjoint spectral frames. Based on the linear mixing models, we propose a spatial-spectral unmixing (SSU) algorithm to detect and characterize the galaxy spectra. In each spectral frame, the SSU algorithm identifies the pure galaxy regions with a theoretical guarantee, and estimate spectra based on a sparse approximation assumption. The full galaxy spectra can finally be recovered by concatenating the spectra estimates associated with all the spectral frames. The simulations were performed to demonstrate the efficacy of the proposed SSU algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.618
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4299403877
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4299403877Canonical identifier for this work in OpenAlex
- Title
-
SPATIAL-SPECTRAL UNMIXING OF HYPERSPECTRAL DATA FOR DETECTION AND ANALYSIS OF ASTROPHYSICAL SOURCES WITH THE MUSE INSTRUMENTWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2014Year of publication
- Publication date
-
2014-02-05Full publication date if available
- Authors
-
Yu-Shiuan Shen, Tiffany L. Chan, Sébastien Bourguignon, Chong−Yung ChiList of authors in order
- Landing page
-
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.618Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.science/hal-00814708Direct OA link when available
- Concepts
-
Hyperspectral imaging, Remote sensing, Computer science, Spectral analysis, Full spectral imaging, Geology, Physics, Astronomy, SpectroscopyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4299403877 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W4299403877 |
| fwci | 0.0 |
| type | article |
| title | SPATIAL-SPECTRAL UNMIXING OF HYPERSPECTRAL DATA FOR DETECTION AND ANALYSIS OF ASTROPHYSICAL SOURCES WITH THE MUSE INSTRUMENT |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11447 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Blind Source Separation Techniques |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T10640 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9937999844551086 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1602 |
| topics[2].subfield.display_name | Analytical Chemistry |
| topics[2].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9537374973297119 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6254532933235168 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.536666989326477 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2983668108 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5048280358314514 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q280453 |
| concepts[3].display_name | Spectral analysis |
| concepts[4].id | https://openalex.org/C78660771 |
| concepts[4].level | 3 |
| concepts[4].score | 0.41736912727355957 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5508206 |
| concepts[4].display_name | Full spectral imaging |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.22852617502212524 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.22586536407470703 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C1276947 |
| concepts[7].level | 1 |
| concepts[7].score | 0.19047918915748596 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[7].display_name | Astronomy |
| concepts[8].id | https://openalex.org/C32891209 |
| concepts[8].level | 2 |
| concepts[8].score | 0.11174461245536804 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q483666 |
| concepts[8].display_name | Spectroscopy |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.9537374973297119 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.6254532933235168 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.536666989326477 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/spectral-analysis |
| keywords[3].score | 0.5048280358314514 |
| keywords[3].display_name | Spectral analysis |
| keywords[4].id | https://openalex.org/keywords/full-spectral-imaging |
| keywords[4].score | 0.41736912727355957 |
| keywords[4].display_name | Full spectral imaging |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.22852617502212524 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.22586536407470703 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/astronomy |
| keywords[7].score | 0.19047918915748596 |
| keywords[7].display_name | Astronomy |
| keywords[8].id | https://openalex.org/keywords/spectroscopy |
| keywords[8].score | 0.11174461245536804 |
| keywords[8].display_name | Spectroscopy |
| language | en |
| locations[0].id | pmh:oai:CiteSeerX.psu:10.1.1.422.618 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | http://hal.inria.fr/docs/00/81/47/08/PDF/Whispers_Shen2012.pdf |
| locations[0].landing_page_url | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.618 |
| locations[1].id | pmh:oai:HAL:hal-00814708v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. |
| locations[1].landing_page_url | https://hal.science/hal-00814708 |
| authorships[0].author.id | https://openalex.org/A5038203170 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yu-Shiuan Shen |
| authorships[0].affiliations[0].raw_affiliation_string | Inst. Commun. Eng. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu-Shiuan Shen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Inst. Commun. Eng. |
| authorships[1].author.id | https://openalex.org/A5014093545 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7597-4502 |
| authorships[1].author.display_name | Tiffany L. Chan |
| authorships[1].affiliations[0].raw_affiliation_string | Inst. Commun. Eng. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsung-Han Chan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Inst. Commun. Eng. |
| authorships[2].author.id | https://openalex.org/A5025864759 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6660-2704 |
| authorships[2].author.display_name | Sébastien Bourguignon |
| authorships[2].affiliations[0].raw_affiliation_string | Institut de Recherche en Communications et en Cybernétique de Nantes |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sébastien Bourguignon |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institut de Recherche en Communications et en Cybernétique de Nantes |
| authorships[3].author.id | https://openalex.org/A5061813280 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5004-7155 |
| authorships[3].author.display_name | Chong−Yung Chi |
| authorships[3].affiliations[0].raw_affiliation_string | Inst. Commun. Eng. |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chong-Yung Chi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Inst. Commun. Eng. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.science/hal-00814708 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SPATIAL-SPECTRAL UNMIXING OF HYPERSPECTRAL DATA FOR DETECTION AND ANALYSIS OF ASTROPHYSICAL SOURCES WITH THE MUSE INSTRUMENT |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T11447 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Blind Source Separation Techniques |
| related_works | https://openalex.org/W2385371209, https://openalex.org/W4250051149, https://openalex.org/W4386427838, https://openalex.org/W1991437568, https://openalex.org/W2083270190, https://openalex.org/W2533019003, https://openalex.org/W2800956885, https://openalex.org/W2626158795, https://openalex.org/W2057283258, https://openalex.org/W1788560349 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:HAL:hal-00814708v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferenceObject |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. |
| best_oa_location.landing_page_url | https://hal.science/hal-00814708 |
| primary_location.id | pmh:oai:CiteSeerX.psu:10.1.1.422.618 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | http://hal.inria.fr/docs/00/81/47/08/PDF/Whispers_Shen2012.pdf |
| primary_location.landing_page_url | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.422.618 |
| publication_date | 2014-02-05 |
| publication_year | 2014 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 69, 94, 102 |
| abstract_inverted_index.In | 32, 81 |
| abstract_inverted_index.be | 112 |
| abstract_inverted_index.by | 114 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 3, 12, 29, 40, 51, 133 |
| abstract_inverted_index.on | 62, 101 |
| abstract_inverted_index.to | 17, 42, 56, 74, 129 |
| abstract_inverted_index.we | 35, 67 |
| abstract_inverted_index.SSU | 86, 136 |
| abstract_inverted_index.The | 106, 125 |
| abstract_inverted_index.all | 121 |
| abstract_inverted_index.and | 1, 22, 76, 97 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.due | 16 |
| abstract_inverted_index.set | 50 |
| abstract_inverted_index.the | 7, 18, 23, 44, 63, 78, 85, 89, 116, 122, 131, 134 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.MUSE | 9, 30, 41 |
| abstract_inverted_index.blur | 27 |
| abstract_inverted_index.data | 45 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.from | 6 |
| abstract_inverted_index.full | 107 |
| abstract_inverted_index.high | 19 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.pure | 90 |
| abstract_inverted_index.some | 37 |
| abstract_inverted_index.this | 33 |
| abstract_inverted_index.were | 127 |
| abstract_inverted_index.with | 93, 120 |
| abstract_inverted_index.(SSU) | 72 |
| abstract_inverted_index.Based | 61 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.data. | 31 |
| abstract_inverted_index.level | 21 |
| abstract_inverted_index.model | 47 |
| abstract_inverted_index.noise | 20 |
| abstract_inverted_index.work, | 34 |
| abstract_inverted_index.detect | 75 |
| abstract_inverted_index.effect | 28 |
| abstract_inverted_index.frame, | 84 |
| abstract_inverted_index.galaxy | 79, 91, 108 |
| abstract_inverted_index.linear | 52, 64 |
| abstract_inverted_index.mainly | 15 |
| abstract_inverted_index.mixing | 53, 65 |
| abstract_inverted_index.models | 54 |
| abstract_inverted_index.sparse | 103 |
| abstract_inverted_index.finally | 111 |
| abstract_inverted_index.frames. | 60, 124 |
| abstract_inverted_index.models, | 66 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.regions | 92 |
| abstract_inverted_index.sources | 5 |
| abstract_inverted_index.spectra | 99, 109, 117 |
| abstract_inverted_index.variant | 26 |
| abstract_inverted_index.analysis | 2 |
| abstract_inverted_index.disjoint | 58 |
| abstract_inverted_index.efficacy | 132 |
| abstract_inverted_index.estimate | 98 |
| abstract_inverted_index.greatest | 13 |
| abstract_inverted_index.proposed | 135 |
| abstract_inverted_index.spectra. | 80 |
| abstract_inverted_index.spectral | 59, 83, 123 |
| abstract_inverted_index.unmixing | 71 |
| abstract_inverted_index.Detection | 0 |
| abstract_inverted_index.algorithm | 73, 87 |
| abstract_inverted_index.challenge | 14 |
| abstract_inverted_index.estimates | 118 |
| abstract_inverted_index.performed | 128 |
| abstract_inverted_index.realistic | 38 |
| abstract_inverted_index.recovered | 113 |
| abstract_inverted_index.algorithm. | 137 |
| abstract_inverted_index.associated | 119 |
| abstract_inverted_index.different, | 57 |
| abstract_inverted_index.guarantee, | 96 |
| abstract_inverted_index.hypotheses | 39 |
| abstract_inverted_index.identifies | 88 |
| abstract_inverted_index.instrument | 10 |
| abstract_inverted_index.assumption. | 105 |
| abstract_inverted_index.convolution | 46 |
| abstract_inverted_index.demonstrate | 130 |
| abstract_inverted_index.forthcoming | 8 |
| abstract_inverted_index.reformulate | 43 |
| abstract_inverted_index.simulations | 126 |
| abstract_inverted_index.theoretical | 95 |
| abstract_inverted_index.translation | 25 |
| abstract_inverted_index.characterize | 77 |
| abstract_inverted_index.approximation | 104 |
| abstract_inverted_index.astrophysical | 4 |
| abstract_inverted_index.concatenating | 115 |
| abstract_inverted_index.corresponding | 55 |
| abstract_inverted_index.spatial-spectral | 70 |
| abstract_inverted_index.three-dimensional | 24 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.36798533 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |