SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.00788
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction. Our project page is available at: https://3d-spatial-reasoning.github.io/spatial-llm/
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.00788
- https://arxiv.org/pdf/2505.00788
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414769088
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414769088Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.00788Digital Object Identifier
- Title
-
SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Wufei Ma, Luoxin Ye, Celso M. de Melo, Jieneng Chen, Alan YuilleList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.00788Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.00788Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.00788Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414769088 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.00788 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.00788 |
| ids.openalex | https://openalex.org/W4414769088 |
| fwci | |
| type | preprint |
| title | SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12784 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9124000072479248 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Modular Robots and Swarm Intelligence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.00788 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.00788 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.00788 |
| locations[1].id | doi:10.48550/arxiv.2505.00788 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.00788 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070188278 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4696-2833 |
| authorships[0].author.display_name | Wufei Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Wufei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113273834 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luoxin Ye |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ye, Luoxin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066072868 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2680-8334 |
| authorships[2].author.display_name | Celso M. de Melo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | de Melo, Celso M |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5083362398 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jieneng Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Jieneng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086706224 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5207-9249 |
| authorships[4].author.display_name | Alan Yuille |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuille, Alan |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.00788 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12784 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9124000072479248 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Modular Robots and Swarm Intelligence |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.00788 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.00788 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.00788 |
| primary_location.id | pmh:oai:arXiv.org:2505.00788 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.00788 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.00788 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 68, 146 |
| abstract_inverted_index.2D | 49 |
| abstract_inverted_index.3D | 3, 28, 38, 74, 97, 121, 155 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.To | 78 |
| abstract_inverted_index.at | 152 |
| abstract_inverted_index.by | 170 |
| abstract_inverted_index.in | 44, 186 |
| abstract_inverted_index.is | 192 |
| abstract_inverted_index.of | 12, 24, 27, 37, 59, 86, 134, 143 |
| abstract_inverted_index.on | 95, 124 |
| abstract_inverted_index.to | 115 |
| abstract_inverted_index.we | 54, 82, 111, 128 |
| abstract_inverted_index.(1) | 90 |
| abstract_inverted_index.(2) | 102 |
| abstract_inverted_index.Our | 158, 172, 189 |
| abstract_inverted_index.VQA | 117 |
| abstract_inverted_index.and | 41, 63, 99, 101, 140, 176 |
| abstract_inverted_index.are | 112 |
| abstract_inverted_index.at: | 194 |
| abstract_inverted_index.for | 106, 148, 183 |
| abstract_inverted_index.the | 35, 42, 57, 113, 138, 177 |
| abstract_inverted_index.two | 84, 132 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.bias | 43 |
| abstract_inverted_index.data | 40, 80, 93, 105, 118, 136 |
| abstract_inverted_index.from | 14, 34 |
| abstract_inverted_index.lack | 23 |
| abstract_inverted_index.like | 9 |
| abstract_inverted_index.page | 191 |
| abstract_inverted_index.real | 125 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.this | 25, 52, 187 |
| abstract_inverted_index.with | 72, 137 |
| abstract_inverted_index.8.7%. | 171 |
| abstract_inverted_index.LMMs, | 144 |
| abstract_inverted_index.aimed | 151 |
| abstract_inverted_index.data, | 61 |
| abstract_inverted_index.data. | 50 |
| abstract_inverted_index.first | 114 |
| abstract_inverted_index.large | 18, 69 |
| abstract_inverted_index.model | 46, 71 |
| abstract_inverted_index.offer | 180 |
| abstract_inverted_index.stems | 33 |
| abstract_inverted_index.study | 56 |
| abstract_inverted_index.these | 131 |
| abstract_inverted_index.types | 85, 133 |
| abstract_inverted_index.GPT-4o | 168 |
| abstract_inverted_index.Humans | 0 |
| abstract_inverted_index.curate | 116 |
| abstract_inverted_index.design | 150, 175 |
| abstract_inverted_index.future | 184 |
| abstract_inverted_index.highly | 163 |
| abstract_inverted_index.impact | 58 |
| abstract_inverted_index.models | 20 |
| abstract_inverted_index.paper, | 53 |
| abstract_inverted_index.toward | 48, 162 |
| abstract_inverted_index.(LMMs), | 21 |
| abstract_inverted_index.Current | 17 |
| abstract_inverted_index.address | 79 |
| abstract_inverted_index.capable | 164 |
| abstract_inverted_index.complex | 7, 107 |
| abstract_inverted_index.current | 45 |
| abstract_inverted_index.designs | 47, 142 |
| abstract_inverted_index.develop | 83 |
| abstract_inverted_index.focused | 94 |
| abstract_inverted_index.images. | 126 |
| abstract_inverted_index.optimal | 149 |
| abstract_inverted_index.probing | 92 |
| abstract_inverted_index.project | 190 |
| abstract_inverted_index.roadmap | 147 |
| abstract_inverted_index.setups, | 65 |
| abstract_inverted_index.spatial | 4, 29, 75, 108 |
| abstract_inverted_index.Notably, | 110 |
| abstract_inverted_index.advanced | 73 |
| abstract_inverted_index.advances | 160 |
| abstract_inverted_index.enabling | 6 |
| abstract_inverted_index.findings | 179 |
| abstract_inverted_index.however, | 22 |
| abstract_inverted_index.insights | 182 |
| abstract_inverted_index.location | 98 |
| abstract_inverted_index.machines | 161 |
| abstract_inverted_index.object's | 96 |
| abstract_inverted_index.research | 185 |
| abstract_inverted_index.scarcity | 36 |
| abstract_inverted_index.superior | 154 |
| abstract_inverted_index.training | 39, 64, 88, 135, 141 |
| abstract_inverted_index.valuable | 181 |
| abstract_inverted_index.vehicles | 13 |
| abstract_inverted_index.achieving | 153 |
| abstract_inverted_index.available | 193 |
| abstract_inverted_index.datasets: | 89 |
| abstract_inverted_index.different | 15 |
| abstract_inverted_index.empirical | 174 |
| abstract_inverted_index.integrate | 130 |
| abstract_inverted_index.naturally | 1 |
| abstract_inverted_index.providing | 145 |
| abstract_inverted_index.reasoning | 8, 76, 156 |
| abstract_inverted_index.resulting | 178 |
| abstract_inverted_index.SpatialLLM | 159 |
| abstract_inverted_index.abilities. | 77 |
| abstract_inverted_index.capability | 26 |
| abstract_inverted_index.collisions | 11 |
| abstract_inverted_index.direction. | 188 |
| abstract_inverted_index.limitation | 32 |
| abstract_inverted_index.multimodal | 19 |
| abstract_inverted_index.predicting | 10 |
| abstract_inverted_index.reasoning, | 166 |
| abstract_inverted_index.reasoning. | 30 |
| abstract_inverted_index.surpassing | 167 |
| abstract_inverted_index.systematic | 173 |
| abstract_inverted_index.understand | 2 |
| abstract_inverted_index.3D-informed | 60, 87, 91, 103, 165 |
| abstract_inverted_index.SpatialLLM, | 67 |
| abstract_inverted_index.directions. | 16 |
| abstract_inverted_index.incorporate | 120 |
| abstract_inverted_index.introducing | 66 |
| abstract_inverted_index.multi-modal | 70 |
| abstract_inverted_index.orientation | 122 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.Furthermore, | 127 |
| abstract_inverted_index.conversation | 104 |
| abstract_inverted_index.limitations, | 81 |
| abstract_inverted_index.orientation, | 100 |
| abstract_inverted_index.architectural | 139 |
| abstract_inverted_index.architecture, | 62 |
| abstract_inverted_index.capabilities. | 157 |
| abstract_inverted_index.relationships | 123 |
| abstract_inverted_index.relationships, | 5 |
| abstract_inverted_index.relationships. | 109 |
| abstract_inverted_index.systematically | 55, 129 |
| abstract_inverted_index.https://3d-spatial-reasoning.github.io/spatial-llm/ | 195 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |