Spatially and temporally coherent visual summaries Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1912.00719
When exploring large time-varying data sets, visual summaries are a useful tool to identify time intervals of interest for further consideration. A typical approach is to represent the data elements at each time step in a compact one-dimensional form or via a one-dimensional ordering. Such 1D representations can then be placed in temporal order along a time line. There are two main criteria to assess the quality of the resulting visual summary: spatial quality -- how well does the 1D representation capture the structure of the data at each time step, and stability -- how coherent are the 1D representations over consecutive time steps or temporal ranges? We focus on techniques that create such visual summaries using 1D orderings for entities moving in 2D. We introduce stable techniques based on well-established dimensionality-reduction techniques: Principle Component Analysis, Sammon mapping, and t-SNE. Our Stable Principal Component method is explicitly parametrized for stability, allowing a trade-off between the two quality criteria. We conduct computational experiments that compare our stable methods to various state-of-the-art approaches using a set of well-established quality metrics that capture the two main criteria. These experiments demonstrate that our stable algorithms outperform existing methods on stability, without sacrificing spatial quality or efficiency.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=917633
- OA Status
- gold
- Cited By
- 3
- References
- 20
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2990236248
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2990236248Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1912.00719Digital Object Identifier
- Title
-
Spatially and temporally coherent visual summariesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-02Full publication date if available
- Authors
-
Jules Wulms, Juri Buchmüller, Wouter Meulemans, K.A.B. Verbeek, Bettina SpeckmannList of authors in order
- Landing page
-
https://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=917633Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://research.tue.nl/en/publications/5099bab4-d331-49dc-a341-203c300c48b1Direct OA link when available
- Concepts
-
Computer science, Principal component analysis, Stability (learning theory), Dimensionality reduction, Representation (politics), Curse of dimensionality, Set (abstract data type), Dimension (graph theory), Quality (philosophy), Focus (optics), Pattern recognition (psychology), Artificial intelligence, Data set, Component (thermodynamics), Data mining, Visualization, Algorithm, Machine learning, Mathematics, Political science, Politics, Optics, Epistemology, Programming language, Law, Thermodynamics, Physics, Pure mathematics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 2, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2990236248 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1912.00719 |
| ids.mag | 2990236248 |
| ids.openalex | https://openalex.org/W2990236248 |
| fwci | |
| type | preprint |
| title | Spatially and temporally coherent visual summaries |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10799 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Data Visualization and Analytics |
| topics[1].id | https://openalex.org/T11106 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9973000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Data Management and Algorithms |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908000230789185 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7224316000938416 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C27438332 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7119353413581848 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[1].display_name | Principal component analysis |
| concepts[2].id | https://openalex.org/C112972136 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6878200769424438 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[2].display_name | Stability (learning theory) |
| concepts[3].id | https://openalex.org/C70518039 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6814142465591431 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[3].display_name | Dimensionality reduction |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6220844984054565 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C111030470 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6184053421020508 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[5].display_name | Curse of dimensionality |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5713032484054565 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C33676613 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5346130132675171 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[7].display_name | Dimension (graph theory) |
| concepts[8].id | https://openalex.org/C2779530757 |
| concepts[8].level | 2 |
| concepts[8].score | 0.530514657497406 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[8].display_name | Quality (philosophy) |
| concepts[9].id | https://openalex.org/C192209626 |
| concepts[9].level | 2 |
| concepts[9].score | 0.47453343868255615 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[9].display_name | Focus (optics) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4551125168800354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.45205092430114746 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C58489278 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4487234950065613 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[12].display_name | Data set |
| concepts[13].id | https://openalex.org/C168167062 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4486052989959717 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[13].display_name | Component (thermodynamics) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.43475377559661865 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C36464697 |
| concepts[15].level | 2 |
| concepts[15].score | 0.41813576221466064 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[15].display_name | Visualization |
| concepts[16].id | https://openalex.org/C11413529 |
| concepts[16].level | 1 |
| concepts[16].score | 0.40648022294044495 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[16].display_name | Algorithm |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.24890360236167908 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.2132653295993805 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C94625758 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[20].display_name | Politics |
| concepts[21].id | https://openalex.org/C120665830 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[21].display_name | Optics |
| concepts[22].id | https://openalex.org/C111472728 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[22].display_name | Epistemology |
| concepts[23].id | https://openalex.org/C199360897 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[23].display_name | Programming language |
| concepts[24].id | https://openalex.org/C199539241 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[24].display_name | Law |
| concepts[25].id | https://openalex.org/C97355855 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[25].display_name | Thermodynamics |
| concepts[26].id | https://openalex.org/C121332964 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[26].display_name | Physics |
| concepts[27].id | https://openalex.org/C202444582 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[27].display_name | Pure mathematics |
| concepts[28].id | https://openalex.org/C138885662 |
| concepts[28].level | 0 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[28].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7224316000938416 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[1].score | 0.7119353413581848 |
| keywords[1].display_name | Principal component analysis |
| keywords[2].id | https://openalex.org/keywords/stability |
| keywords[2].score | 0.6878200769424438 |
| keywords[2].display_name | Stability (learning theory) |
| keywords[3].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[3].score | 0.6814142465591431 |
| keywords[3].display_name | Dimensionality reduction |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.6220844984054565 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[5].score | 0.6184053421020508 |
| keywords[5].display_name | Curse of dimensionality |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.5713032484054565 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/dimension |
| keywords[7].score | 0.5346130132675171 |
| keywords[7].display_name | Dimension (graph theory) |
| keywords[8].id | https://openalex.org/keywords/quality |
| keywords[8].score | 0.530514657497406 |
| keywords[8].display_name | Quality (philosophy) |
| keywords[9].id | https://openalex.org/keywords/focus |
| keywords[9].score | 0.47453343868255615 |
| keywords[9].display_name | Focus (optics) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.4551125168800354 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.45205092430114746 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/data-set |
| keywords[12].score | 0.4487234950065613 |
| keywords[12].display_name | Data set |
| keywords[13].id | https://openalex.org/keywords/component |
| keywords[13].score | 0.4486052989959717 |
| keywords[13].display_name | Component (thermodynamics) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.43475377559661865 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/visualization |
| keywords[15].score | 0.41813576221466064 |
| keywords[15].display_name | Visualization |
| keywords[16].id | https://openalex.org/keywords/algorithm |
| keywords[16].score | 0.40648022294044495 |
| keywords[16].display_name | Algorithm |
| keywords[17].id | https://openalex.org/keywords/machine-learning |
| keywords[17].score | 0.24890360236167908 |
| keywords[17].display_name | Machine learning |
| keywords[18].id | https://openalex.org/keywords/mathematics |
| keywords[18].score | 0.2132653295993805 |
| keywords[18].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:917633 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306400553 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Munich Personal RePEc Archive (Ludwig Maximilian University of Munich) |
| locations[0].source.host_organization | https://openalex.org/I8204097 |
| locations[0].source.host_organization_name | Ludwig-Maximilians-Universität München |
| locations[0].source.host_organization_lineage | https://openalex.org/I8204097 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Article / Letter to the editor |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | ISSN: |
| locations[0].landing_page_url | http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=917633 |
| locations[1].id | pmh:oai:library.tue.nl:917633 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article / Letter to the editor |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ISSN: |
| locations[1].landing_page_url | http://repository.tue.nl/917633 |
| locations[2].id | pmh:oai:pure.tue.nl:openaire_cris_publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Wulms , J J H M , Buchmüller , J , Meulemans , W , Verbeek , K A B & Speckmann , B 2019 , ' Spatially and temporally coherent visual summaries ' , arXiv , vol. 2019 , 1912.00719v1 . https://doi.org/10.48550/arXiv.1912.00719 |
| locations[2].landing_page_url | https://research.tue.nl/en/publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| locations[3].id | pmh:tue:oai:pure.tue.nl:publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401843 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[3].source.host_organization | https://openalex.org/I1322597698 |
| locations[3].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[3].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv, 2019:1912.00719v1. Cornell University Library |
| locations[3].landing_page_url | https://research.tue.nl/nl/publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| locations[4].id | mag:2990236248 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | |
| authorships[0].author.id | https://openalex.org/A5022996610 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9314-8260 |
| authorships[0].author.display_name | Jules Wulms |
| authorships[0].countries | AT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210099593 |
| authorships[0].affiliations[0].raw_affiliation_string | Algorithms, Geometry and Applications |
| authorships[0].institutions[0].id | https://openalex.org/I4210099593 |
| authorships[0].institutions[0].ror | https://ror.org/00zky6d38 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210099593 |
| authorships[0].institutions[0].country_code | AT |
| authorships[0].institutions[0].display_name | Computer Algorithms for Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jules J.H.M. Wulms |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Algorithms, Geometry and Applications |
| authorships[1].author.id | https://openalex.org/A5071098711 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4713-911X |
| authorships[1].author.display_name | Juri Buchmüller |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I189712700 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Konstanz. |
| authorships[1].institutions[0].id | https://openalex.org/I189712700 |
| authorships[1].institutions[0].ror | https://ror.org/0546hnb39 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I189712700 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Konstanz |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juri Buchmüller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Konstanz. |
| authorships[2].author.id | https://openalex.org/A5062614232 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4978-3400 |
| authorships[2].author.display_name | Wouter Meulemans |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210099593 |
| authorships[2].affiliations[0].raw_affiliation_string | Algorithms, Geometry and Applications |
| authorships[2].institutions[0].id | https://openalex.org/I4210099593 |
| authorships[2].institutions[0].ror | https://ror.org/00zky6d38 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210099593 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | Computer Algorithms for Medicine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wouter Meulemans |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Algorithms, Geometry and Applications |
| authorships[3].author.id | https://openalex.org/A5113844321 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | K.A.B. Verbeek |
| authorships[3].countries | AT, IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210099593, https://openalex.org/I4210153302 |
| authorships[3].affiliations[0].raw_affiliation_string | Applied Geometric Algorithms |
| authorships[3].institutions[0].id | https://openalex.org/I4210099593 |
| authorships[3].institutions[0].ror | https://ror.org/00zky6d38 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210099593 |
| authorships[3].institutions[0].country_code | AT |
| authorships[3].institutions[0].display_name | Computer Algorithms for Medicine |
| authorships[3].institutions[1].id | https://openalex.org/I4210153302 |
| authorships[3].institutions[1].ror | https://ror.org/04xprjz26 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210153302 |
| authorships[3].institutions[1].country_code | IN |
| authorships[3].institutions[1].display_name | Geometric (India) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kevin A.B. Verbeek |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Applied Geometric Algorithms |
| authorships[4].author.id | https://openalex.org/A5000420564 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8514-7858 |
| authorships[4].author.display_name | Bettina Speckmann |
| authorships[4].countries | AT, IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210099593, https://openalex.org/I4210153302 |
| authorships[4].affiliations[0].raw_affiliation_string | Applied Geometric Algorithms |
| authorships[4].institutions[0].id | https://openalex.org/I4210099593 |
| authorships[4].institutions[0].ror | https://ror.org/00zky6d38 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210099593 |
| authorships[4].institutions[0].country_code | AT |
| authorships[4].institutions[0].display_name | Computer Algorithms for Medicine |
| authorships[4].institutions[1].id | https://openalex.org/I4210153302 |
| authorships[4].institutions[1].ror | https://ror.org/04xprjz26 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210153302 |
| authorships[4].institutions[1].country_code | IN |
| authorships[4].institutions[1].display_name | Geometric (India) |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bettina Speckmann |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Applied Geometric Algorithms |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://research.tue.nl/en/publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatially and temporally coherent visual summaries |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10799 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Data Visualization and Analytics |
| related_works | https://openalex.org/W3180549265, https://openalex.org/W3080778113, https://openalex.org/W2057753721, https://openalex.org/W2554654110, https://openalex.org/W3166055205, https://openalex.org/W2053938767, https://openalex.org/W2003016839, https://openalex.org/W2952832103, https://openalex.org/W1803344800, https://openalex.org/W2914814818, https://openalex.org/W2806207967, https://openalex.org/W2899414427, https://openalex.org/W93462258, https://openalex.org/W2147055032, https://openalex.org/W9379453, https://openalex.org/W3184285244, https://openalex.org/W368311706, https://openalex.org/W3206707720, https://openalex.org/W2888090831, https://openalex.org/W3136415407 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:pure.tue.nl:openaire_cris_publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Wulms , J J H M , Buchmüller , J , Meulemans , W , Verbeek , K A B & Speckmann , B 2019 , ' Spatially and temporally coherent visual summaries ' , arXiv , vol. 2019 , 1912.00719v1 . https://doi.org/10.48550/arXiv.1912.00719 |
| best_oa_location.landing_page_url | https://research.tue.nl/en/publications/5099bab4-d331-49dc-a341-203c300c48b1 |
| primary_location.id | pmh:917633 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306400553 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Munich Personal RePEc Archive (Ludwig Maximilian University of Munich) |
| primary_location.source.host_organization | https://openalex.org/I8204097 |
| primary_location.source.host_organization_name | Ludwig-Maximilians-Universität München |
| primary_location.source.host_organization_lineage | https://openalex.org/I8204097 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Article / Letter to the editor |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | ISSN: |
| primary_location.landing_page_url | http://library.tue.nl/csp/dare/LinkToRepository.csp?recordnumber=917633 |
| publication_date | 2019-12-02 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2924102294, https://openalex.org/W2072605585, https://openalex.org/W2094840417, https://openalex.org/W2106268337, https://openalex.org/W2001141328, https://openalex.org/W2999123, https://openalex.org/W2103991913, https://openalex.org/W2118269922, https://openalex.org/W2187089797, https://openalex.org/W1582500501, https://openalex.org/W3103000343, https://openalex.org/W2888207115, https://openalex.org/W2050753795, https://openalex.org/W2046336997, https://openalex.org/W2905015557, https://openalex.org/W2753396776, https://openalex.org/W2152825437, https://openalex.org/W2586761003, https://openalex.org/W2082171763, https://openalex.org/W2008196645 |
| referenced_works_count | 20 |
| abstract_inverted_index.A | 21 |
| abstract_inverted_index.a | 9, 35, 41, 55, 151, 172 |
| abstract_inverted_index.-- | 74, 93 |
| abstract_inverted_index.1D | 45, 79, 98, 117 |
| abstract_inverted_index.We | 107, 124, 158 |
| abstract_inverted_index.at | 30, 87 |
| abstract_inverted_index.be | 49 |
| abstract_inverted_index.in | 34, 51, 122 |
| abstract_inverted_index.is | 24, 145 |
| abstract_inverted_index.of | 16, 67, 84, 174 |
| abstract_inverted_index.on | 109, 129, 194 |
| abstract_inverted_index.or | 39, 104, 200 |
| abstract_inverted_index.to | 12, 25, 63, 167 |
| abstract_inverted_index.2D. | 123 |
| abstract_inverted_index.Our | 140 |
| abstract_inverted_index.and | 91, 138 |
| abstract_inverted_index.are | 8, 59, 96 |
| abstract_inverted_index.can | 47 |
| abstract_inverted_index.for | 18, 119, 148 |
| abstract_inverted_index.how | 75, 94 |
| abstract_inverted_index.our | 164, 188 |
| abstract_inverted_index.set | 173 |
| abstract_inverted_index.the | 27, 65, 68, 78, 82, 85, 97, 154, 180 |
| abstract_inverted_index.two | 60, 155, 181 |
| abstract_inverted_index.via | 40 |
| abstract_inverted_index.Such | 44 |
| abstract_inverted_index.When | 0 |
| abstract_inverted_index.data | 4, 28, 86 |
| abstract_inverted_index.does | 77 |
| abstract_inverted_index.each | 31, 88 |
| abstract_inverted_index.form | 38 |
| abstract_inverted_index.main | 61, 182 |
| abstract_inverted_index.over | 100 |
| abstract_inverted_index.step | 33 |
| abstract_inverted_index.such | 113 |
| abstract_inverted_index.that | 111, 162, 178, 187 |
| abstract_inverted_index.then | 48 |
| abstract_inverted_index.time | 14, 32, 56, 89, 102 |
| abstract_inverted_index.tool | 11 |
| abstract_inverted_index.well | 76 |
| abstract_inverted_index.There | 58 |
| abstract_inverted_index.These | 184 |
| abstract_inverted_index.along | 54 |
| abstract_inverted_index.based | 128 |
| abstract_inverted_index.focus | 108 |
| abstract_inverted_index.large | 2 |
| abstract_inverted_index.line. | 57 |
| abstract_inverted_index.order | 53 |
| abstract_inverted_index.sets, | 5 |
| abstract_inverted_index.step, | 90 |
| abstract_inverted_index.steps | 103 |
| abstract_inverted_index.using | 116, 171 |
| abstract_inverted_index.Sammon | 136 |
| abstract_inverted_index.Stable | 141 |
| abstract_inverted_index.assess | 64 |
| abstract_inverted_index.create | 112 |
| abstract_inverted_index.method | 144 |
| abstract_inverted_index.moving | 121 |
| abstract_inverted_index.placed | 50 |
| abstract_inverted_index.stable | 126, 165, 189 |
| abstract_inverted_index.t-SNE. | 139 |
| abstract_inverted_index.useful | 10 |
| abstract_inverted_index.visual | 6, 70, 114 |
| abstract_inverted_index.between | 153 |
| abstract_inverted_index.capture | 81, 179 |
| abstract_inverted_index.compact | 36 |
| abstract_inverted_index.compare | 163 |
| abstract_inverted_index.conduct | 159 |
| abstract_inverted_index.further | 19 |
| abstract_inverted_index.methods | 166, 193 |
| abstract_inverted_index.metrics | 177 |
| abstract_inverted_index.quality | 66, 73, 156, 176, 199 |
| abstract_inverted_index.ranges? | 106 |
| abstract_inverted_index.spatial | 72, 198 |
| abstract_inverted_index.typical | 22 |
| abstract_inverted_index.various | 168 |
| abstract_inverted_index.without | 196 |
| abstract_inverted_index.allowing | 150 |
| abstract_inverted_index.approach | 23 |
| abstract_inverted_index.coherent | 95 |
| abstract_inverted_index.criteria | 62 |
| abstract_inverted_index.elements | 29 |
| abstract_inverted_index.entities | 120 |
| abstract_inverted_index.existing | 192 |
| abstract_inverted_index.identify | 13 |
| abstract_inverted_index.interest | 17 |
| abstract_inverted_index.mapping, | 137 |
| abstract_inverted_index.summary: | 71 |
| abstract_inverted_index.temporal | 52, 105 |
| abstract_inverted_index.Analysis, | 135 |
| abstract_inverted_index.Component | 134, 143 |
| abstract_inverted_index.Principal | 142 |
| abstract_inverted_index.Principle | 133 |
| abstract_inverted_index.criteria. | 157, 183 |
| abstract_inverted_index.exploring | 1 |
| abstract_inverted_index.intervals | 15 |
| abstract_inverted_index.introduce | 125 |
| abstract_inverted_index.ordering. | 43 |
| abstract_inverted_index.orderings | 118 |
| abstract_inverted_index.represent | 26 |
| abstract_inverted_index.resulting | 69 |
| abstract_inverted_index.stability | 92 |
| abstract_inverted_index.structure | 83 |
| abstract_inverted_index.summaries | 7, 115 |
| abstract_inverted_index.trade-off | 152 |
| abstract_inverted_index.algorithms | 190 |
| abstract_inverted_index.approaches | 170 |
| abstract_inverted_index.explicitly | 146 |
| abstract_inverted_index.outperform | 191 |
| abstract_inverted_index.stability, | 149, 195 |
| abstract_inverted_index.techniques | 110, 127 |
| abstract_inverted_index.consecutive | 101 |
| abstract_inverted_index.demonstrate | 186 |
| abstract_inverted_index.efficiency. | 201 |
| abstract_inverted_index.experiments | 161, 185 |
| abstract_inverted_index.sacrificing | 197 |
| abstract_inverted_index.techniques: | 132 |
| abstract_inverted_index.parametrized | 147 |
| abstract_inverted_index.time-varying | 3 |
| abstract_inverted_index.computational | 160 |
| abstract_inverted_index.consideration. | 20 |
| abstract_inverted_index.representation | 80 |
| abstract_inverted_index.one-dimensional | 37, 42 |
| abstract_inverted_index.representations | 46, 99 |
| abstract_inverted_index.state-of-the-art | 169 |
| abstract_inverted_index.well-established | 130, 175 |
| abstract_inverted_index.dimensionality-reduction | 131 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |