Spatially-Aware Loss Functions for GAN-Driven Super-Resolution Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3579004
Generative Adversarial Networks (GANs) have shown great performance on super-resolution problems since they can generate more visually realistic images and video frames. However, these models often introduce side effects into the outputs, such as unexpected artifacts and noises. To reduce these artifacts and enhance the perceptual quality of the results, in this paper, we propose a general method that can be effectively used in most GAN-based super-resolution (SR) models by introducing essential spatial information into the training process. We extract spatial information from the input data and incorporate it into the training loss, making the corresponding loss a spatially adaptive (SA) one. After that, we utilize it to guide the training process. We will show that the proposed approach is independent of the methods used to extract the spatial information and independent of the SR tasks and models. This method consistently guides the training process towards generating visually pleasing SR images and video frames, substantially mitigating artifacts and noise, ultimately leading to enhanced perceptual quality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3579004
- OA Status
- gold
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411232113
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411232113Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3579004Digital Object Identifier
- Title
-
Spatially-Aware Loss Functions for GAN-Driven Super-ResolutionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Xijun Wang, Santiago López-Tapia, Xinyi Wu, Rafael Molina, Aggelos K. KatsaggelosList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3579004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3579004Direct OA link when available
- Concepts
-
Computer science, Resolution (logic), Image resolution, Optoelectronics, Materials science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411232113 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3579004 |
| ids.doi | https://doi.org/10.1109/access.2025.3579004 |
| ids.openalex | https://openalex.org/W4411232113 |
| fwci | 0.0 |
| type | article |
| title | Spatially-Aware Loss Functions for GAN-Driven Super-Resolution |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 108572 |
| biblio.first_page | 108561 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9872000217437744 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T11105 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9789000153541565 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image Processing Techniques |
| topics[2].id | https://openalex.org/T11569 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9776999950408936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Optical Coherence Tomography Applications |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.48497653007507324 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C138268822 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4256898760795593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[1].display_name | Resolution (logic) |
| concepts[2].id | https://openalex.org/C205372480 |
| concepts[2].level | 2 |
| concepts[2].score | 0.424642413854599 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[2].display_name | Image resolution |
| concepts[3].id | https://openalex.org/C49040817 |
| concepts[3].level | 1 |
| concepts[3].score | 0.39768460392951965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q193091 |
| concepts[3].display_name | Optoelectronics |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3896968960762024 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1690225899219513 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.48497653007507324 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/resolution |
| keywords[1].score | 0.4256898760795593 |
| keywords[1].display_name | Resolution (logic) |
| keywords[2].id | https://openalex.org/keywords/image-resolution |
| keywords[2].score | 0.424642413854599 |
| keywords[2].display_name | Image resolution |
| keywords[3].id | https://openalex.org/keywords/optoelectronics |
| keywords[3].score | 0.39768460392951965 |
| keywords[3].display_name | Optoelectronics |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.3896968960762024 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.1690225899219513 |
| keywords[5].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3579004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3579004 |
| locations[1].id | pmh:oai:doaj.org/article:07d50625551940e8b22776ef8795fd0e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 108561-108572 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/07d50625551940e8b22776ef8795fd0e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072645074 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-2164-1712 |
| authorships[0].author.display_name | Xijun Wang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Northwestern University, Evanston, IL, USA |
| authorships[0].institutions[0].id | https://openalex.org/I111979921 |
| authorships[0].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Northwestern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xijun Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Northwestern University, Evanston, IL, USA |
| authorships[1].author.id | https://openalex.org/A5046773255 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2090-7446 |
| authorships[1].author.display_name | Santiago López-Tapia |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| authorships[1].institutions[0].id | https://openalex.org/I111979921 |
| authorships[1].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Northwestern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Santiago López-Tapia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| authorships[2].author.id | https://openalex.org/A5105053161 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0791-6305 |
| authorships[2].author.display_name | Xinyi Wu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| authorships[2].institutions[0].id | https://openalex.org/I111979921 |
| authorships[2].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Northwestern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinyi Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| authorships[3].author.id | https://openalex.org/A5023830568 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4694-8588 |
| authorships[3].author.display_name | Rafael Molina |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173304897 |
| authorships[3].affiliations[0].raw_affiliation_string | Computer Science and Artificial Intelligence Department, Universidad de Granada, Granada, Spain |
| authorships[3].institutions[0].id | https://openalex.org/I173304897 |
| authorships[3].institutions[0].ror | https://ror.org/04njjy449 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I173304897 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Universidad de Granada |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rafael Molina |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Computer Science and Artificial Intelligence Department, Universidad de Granada, Granada, Spain |
| authorships[4].author.id | https://openalex.org/A5048650003 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4554-0070 |
| authorships[4].author.display_name | Aggelos K. Katsaggelos |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| authorships[4].institutions[0].id | https://openalex.org/I111979921 |
| authorships[4].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Northwestern University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Aggelos K. Katsaggelos |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3579004 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatially-Aware Loss Functions for GAN-Driven Super-Resolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9872000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2362774332, https://openalex.org/W4249245269, https://openalex.org/W2765548132, https://openalex.org/W2025681766, https://openalex.org/W2542402767, https://openalex.org/W3023086044, https://openalex.org/W2294441925, https://openalex.org/W2142226356, https://openalex.org/W3210000161 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3579004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3579004 |
| primary_location.id | doi:10.1109/access.2025.3579004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3579004 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2782977076, https://openalex.org/W4318953863, https://openalex.org/W4399073758, https://openalex.org/W4399282571, https://openalex.org/W4390939274, https://openalex.org/W2927933146, https://openalex.org/W4322772383, https://openalex.org/W4312469830, https://openalex.org/W4385412453, https://openalex.org/W54257720, https://openalex.org/W2320725294, https://openalex.org/W2242218935, https://openalex.org/W2963372104, https://openalex.org/W6637568146, https://openalex.org/W2963037581, https://openalex.org/W2963470893, https://openalex.org/W2952773607, https://openalex.org/W2808109260, https://openalex.org/W2883804791, https://openalex.org/W3039250377, https://openalex.org/W3211482190, https://openalex.org/W2963814095, https://openalex.org/W2988539781, https://openalex.org/W2866634454, https://openalex.org/W2963645458, https://openalex.org/W2965669158, https://openalex.org/W2950689937, https://openalex.org/W2963583792, https://openalex.org/W4362576420, https://openalex.org/W2898677683, https://openalex.org/W2982074157, https://openalex.org/W2891761377, https://openalex.org/W2017428268, https://openalex.org/W2145023731, https://openalex.org/W6803376173, https://openalex.org/W2940315951, https://openalex.org/W6637373629, https://openalex.org/W2741137940, https://openalex.org/W1791560514, https://openalex.org/W6631190155, https://openalex.org/W2962785568, https://openalex.org/W2613155248 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 55, 97 |
| abstract_inverted_index.SR | 134, 149 |
| abstract_inverted_index.To | 38 |
| abstract_inverted_index.We | 78, 112 |
| abstract_inverted_index.as | 33 |
| abstract_inverted_index.be | 60 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.in | 50, 63 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.it | 88, 106 |
| abstract_inverted_index.of | 47, 121, 132 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 107, 125, 161 |
| abstract_inverted_index.we | 53, 104 |
| abstract_inverted_index.and | 19, 36, 42, 86, 130, 136, 151, 157 |
| abstract_inverted_index.can | 13, 59 |
| abstract_inverted_index.the | 30, 44, 48, 75, 83, 90, 94, 109, 116, 122, 127, 133, 142 |
| abstract_inverted_index.(SA) | 100 |
| abstract_inverted_index.(SR) | 67 |
| abstract_inverted_index.This | 138 |
| abstract_inverted_index.data | 85 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.into | 29, 74, 89 |
| abstract_inverted_index.loss | 96 |
| abstract_inverted_index.more | 15 |
| abstract_inverted_index.most | 64 |
| abstract_inverted_index.one. | 101 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.side | 27 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.that | 58, 115 |
| abstract_inverted_index.they | 12 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.used | 62, 124 |
| abstract_inverted_index.will | 113 |
| abstract_inverted_index.After | 102 |
| abstract_inverted_index.great | 6 |
| abstract_inverted_index.guide | 108 |
| abstract_inverted_index.input | 84 |
| abstract_inverted_index.loss, | 92 |
| abstract_inverted_index.often | 25 |
| abstract_inverted_index.shown | 5 |
| abstract_inverted_index.since | 11 |
| abstract_inverted_index.tasks | 135 |
| abstract_inverted_index.that, | 103 |
| abstract_inverted_index.these | 23, 40 |
| abstract_inverted_index.video | 20, 152 |
| abstract_inverted_index.(GANs) | 3 |
| abstract_inverted_index.guides | 141 |
| abstract_inverted_index.images | 18, 150 |
| abstract_inverted_index.making | 93 |
| abstract_inverted_index.method | 57, 139 |
| abstract_inverted_index.models | 24, 68 |
| abstract_inverted_index.noise, | 158 |
| abstract_inverted_index.paper, | 52 |
| abstract_inverted_index.reduce | 39 |
| abstract_inverted_index.effects | 28 |
| abstract_inverted_index.enhance | 43 |
| abstract_inverted_index.extract | 79, 126 |
| abstract_inverted_index.frames, | 153 |
| abstract_inverted_index.frames. | 21 |
| abstract_inverted_index.general | 56 |
| abstract_inverted_index.leading | 160 |
| abstract_inverted_index.methods | 123 |
| abstract_inverted_index.models. | 137 |
| abstract_inverted_index.noises. | 37 |
| abstract_inverted_index.process | 144 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.quality | 46 |
| abstract_inverted_index.spatial | 72, 80, 128 |
| abstract_inverted_index.towards | 145 |
| abstract_inverted_index.utilize | 105 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Networks | 2 |
| abstract_inverted_index.adaptive | 99 |
| abstract_inverted_index.approach | 118 |
| abstract_inverted_index.enhanced | 162 |
| abstract_inverted_index.generate | 14 |
| abstract_inverted_index.outputs, | 31 |
| abstract_inverted_index.pleasing | 148 |
| abstract_inverted_index.problems | 10 |
| abstract_inverted_index.process. | 77, 111 |
| abstract_inverted_index.proposed | 117 |
| abstract_inverted_index.quality. | 164 |
| abstract_inverted_index.results, | 49 |
| abstract_inverted_index.training | 76, 91, 110, 143 |
| abstract_inverted_index.visually | 16, 147 |
| abstract_inverted_index.GAN-based | 65 |
| abstract_inverted_index.artifacts | 35, 41, 156 |
| abstract_inverted_index.essential | 71 |
| abstract_inverted_index.introduce | 26 |
| abstract_inverted_index.realistic | 17 |
| abstract_inverted_index.spatially | 98 |
| abstract_inverted_index.Generative | 0 |
| abstract_inverted_index.generating | 146 |
| abstract_inverted_index.mitigating | 155 |
| abstract_inverted_index.perceptual | 45, 163 |
| abstract_inverted_index.ultimately | 159 |
| abstract_inverted_index.unexpected | 34 |
| abstract_inverted_index.Adversarial | 1 |
| abstract_inverted_index.effectively | 61 |
| abstract_inverted_index.incorporate | 87 |
| abstract_inverted_index.independent | 120, 131 |
| abstract_inverted_index.information | 73, 81, 129 |
| abstract_inverted_index.introducing | 70 |
| abstract_inverted_index.performance | 7 |
| abstract_inverted_index.consistently | 140 |
| abstract_inverted_index.corresponding | 95 |
| abstract_inverted_index.substantially | 154 |
| abstract_inverted_index.super-resolution | 9, 66 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.2168644 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |