Spatio-Temporal Joint Density Driven Learning for Skeleton-Based Action Recognition Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/tbiom.2025.3566212
Traditional approaches in unsupervised or self supervised learning for skeleton-based action classification have concentrated predominantly on the dynamic aspects of skeletal sequences. Yet, the intricate interaction between the moving and static elements of the skeleton presents a rarely tapped discriminative potential for action classification. This paper introduces a novel measurement, referred to as spatial-temporal joint density (STJD), to quantify such interaction. Tracking the evolution of this density throughout an action can effectively identify a subset of discriminative moving and/or static joints termed "prime joints" to steer self-supervised learning. A new contrastive learning strategy named STJD-CL is proposed to align the representation of a skeleton sequence with that of its prime joints while simultaneously contrasting the representations of prime and nonprime joints. In addition, a method called STJD-MP is developed by integrating it with a reconstruction-based framework for more effective learning. Experimental evaluations on the NTU RGB+D 60, NTU RGB+D 120, and PKUMMD datasets in various downstream tasks demonstrate that the proposed STJD-CL and STJD-MP improved performance, particularly by 3.5 and 3.6 percentage points over the state-of-the-art contrastive methods on the NTU RGB+D 120 dataset using X-sub and X-set evaluations, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tbiom.2025.3566212
- OA Status
- green
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410027873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410027873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tbiom.2025.3566212Digital Object Identifier
- Title
-
Spatio-Temporal Joint Density Driven Learning for Skeleton-Based Action RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-02Full publication date if available
- Authors
-
Shanaka Ramesh Gunasekara, Wanqing Li, Philip Ogunbona, Jie YangList of authors in order
- Landing page
-
https://doi.org/10.1109/tbiom.2025.3566212Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.23012Direct OA link when available
- Concepts
-
Skeleton (computer programming), Joint (building), Action recognition, Artificial intelligence, Computer science, Action (physics), Pattern recognition (psychology), Human skeleton, Engineering, Physics, Class (philosophy), Architectural engineering, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410027873 |
|---|---|
| doi | https://doi.org/10.1109/tbiom.2025.3566212 |
| ids.doi | https://doi.org/10.1109/tbiom.2025.3566212 |
| ids.openalex | https://openalex.org/W4410027873 |
| fwci | 0.0 |
| type | article |
| title | Spatio-Temporal Joint Density Driven Learning for Skeleton-Based Action Recognition |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 642 |
| biblio.first_page | 632 |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T12740 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9675999879837036 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Gait Recognition and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18969341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.757286548614502 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1169129 |
| concepts[0].display_name | Skeleton (computer programming) |
| concepts[1].id | https://openalex.org/C18555067 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6499718427658081 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[1].display_name | Joint (building) |
| concepts[2].id | https://openalex.org/C2987834672 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5459411144256592 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4677630 |
| concepts[2].display_name | Action recognition |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4893495440483093 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47775998711586 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2780791683 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46970388293266296 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[5].display_name | Action (physics) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4388244152069092 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C2777846634 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4212051331996918 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9621 |
| concepts[7].display_name | Human skeleton |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08825299143791199 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07848411798477173 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C2777212361 |
| concepts[10].level | 2 |
| concepts[10].score | 0.048409074544906616 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[10].display_name | Class (philosophy) |
| concepts[11].id | https://openalex.org/C170154142 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[11].display_name | Architectural engineering |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/skeleton |
| keywords[0].score | 0.757286548614502 |
| keywords[0].display_name | Skeleton (computer programming) |
| keywords[1].id | https://openalex.org/keywords/joint |
| keywords[1].score | 0.6499718427658081 |
| keywords[1].display_name | Joint (building) |
| keywords[2].id | https://openalex.org/keywords/action-recognition |
| keywords[2].score | 0.5459411144256592 |
| keywords[2].display_name | Action recognition |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4893495440483093 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.47775998711586 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/action |
| keywords[5].score | 0.46970388293266296 |
| keywords[5].display_name | Action (physics) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.4388244152069092 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/human-skeleton |
| keywords[7].score | 0.4212051331996918 |
| keywords[7].display_name | Human skeleton |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.08825299143791199 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.07848411798477173 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/class |
| keywords[10].score | 0.048409074544906616 |
| keywords[10].display_name | Class (philosophy) |
| language | en |
| locations[0].id | doi:10.1109/tbiom.2025.3566212 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210209367 |
| locations[0].source.issn | 2637-6407 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2637-6407 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Biometrics Behavior and Identity Science |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Biometrics, Behavior, and Identity Science |
| locations[0].landing_page_url | https://doi.org/10.1109/tbiom.2025.3566212 |
| locations[1].id | pmh:oai:arXiv.org:2505.23012 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | https://arxiv.org/pdf/2505.23012 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2505.23012 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5007752983 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5827-4878 |
| authorships[0].author.display_name | Shanaka Ramesh Gunasekara |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[0].affiliations[0].raw_affiliation_string | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I204824540 |
| authorships[0].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Wollongong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shanaka Ramesh Gunasekara |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[1].author.id | https://openalex.org/A5100695040 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4427-2687 |
| authorships[1].author.display_name | Wanqing Li |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[1].affiliations[0].raw_affiliation_string | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I204824540 |
| authorships[1].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of Wollongong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wanqing Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[2].author.id | https://openalex.org/A5081319088 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4119-2873 |
| authorships[2].author.display_name | Philip Ogunbona |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[2].affiliations[0].raw_affiliation_string | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I204824540 |
| authorships[2].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Wollongong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Philip Ogunbona |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[3].author.id | https://openalex.org/A5101445040 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1317-8142 |
| authorships[3].author.display_name | Jie Yang |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[3].affiliations[0].raw_affiliation_string | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I204824540 |
| authorships[3].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | University of Wollongong |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jack Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Advanced Multimedia Research Lab, University of Wollongong, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.23012 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatio-Temporal Joint Density Driven Learning for Skeleton-Based Action Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W2953562271, https://openalex.org/W1979723775, https://openalex.org/W2126881935, https://openalex.org/W4312993112, https://openalex.org/W3209135759, https://openalex.org/W2347221702, https://openalex.org/W2523395320, https://openalex.org/W41889997, https://openalex.org/W2784535632, https://openalex.org/W3170431411 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.23012 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.23012 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.23012 |
| primary_location.id | doi:10.1109/tbiom.2025.3566212 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210209367 |
| primary_location.source.issn | 2637-6407 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2637-6407 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Biometrics Behavior and Identity Science |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Biometrics, Behavior, and Identity Science |
| primary_location.landing_page_url | https://doi.org/10.1109/tbiom.2025.3566212 |
| publication_date | 2025-05-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3203634062, https://openalex.org/W2963177663, https://openalex.org/W4391306099, https://openalex.org/W4288515154, https://openalex.org/W4402742547, https://openalex.org/W4392693710, https://openalex.org/W4200634815, https://openalex.org/W4407315509, https://openalex.org/W4390873156, https://openalex.org/W4390871931, https://openalex.org/W3092424783, https://openalex.org/W3159212182, https://openalex.org/W4404624430, https://openalex.org/W4386215080, https://openalex.org/W3156509901, https://openalex.org/W4285228357, https://openalex.org/W4386065445, https://openalex.org/W2125073690, https://openalex.org/W2143267104, https://openalex.org/W343636949, https://openalex.org/W2321533354, https://openalex.org/W2326925005, https://openalex.org/W2981952041, https://openalex.org/W2964037671, https://openalex.org/W2471775118, https://openalex.org/W2963631366, https://openalex.org/W3171007011, https://openalex.org/W4382240189, https://openalex.org/W2963076818, https://openalex.org/W3034548564, https://openalex.org/W3203227473, https://openalex.org/W4313156423, https://openalex.org/W4403842392, https://openalex.org/W4403842411, https://openalex.org/W3205106480, https://openalex.org/W4312387119, https://openalex.org/W3169413442, https://openalex.org/W2964134613, https://openalex.org/W2944006115, https://openalex.org/W2765433083, https://openalex.org/W3216909972, https://openalex.org/W3103184573, https://openalex.org/W4312675926, https://openalex.org/W2997546679 |
| referenced_works_count | 44 |
| abstract_inverted_index.A | 88 |
| abstract_inverted_index.a | 36, 47, 73, 102, 123, 133 |
| abstract_inverted_index.In | 121 |
| abstract_inverted_index.an | 68 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.by | 129, 167 |
| abstract_inverted_index.in | 2, 153 |
| abstract_inverted_index.is | 95, 127 |
| abstract_inverted_index.it | 131 |
| abstract_inverted_index.of | 19, 32, 64, 75, 101, 107, 116 |
| abstract_inverted_index.on | 15, 142, 178 |
| abstract_inverted_index.or | 4 |
| abstract_inverted_index.to | 51, 57, 84, 97 |
| abstract_inverted_index.120 | 182 |
| abstract_inverted_index.3.5 | 168 |
| abstract_inverted_index.3.6 | 170 |
| abstract_inverted_index.60, | 146 |
| abstract_inverted_index.NTU | 144, 147, 180 |
| abstract_inverted_index.and | 29, 118, 150, 162, 169, 186 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 8, 41, 136 |
| abstract_inverted_index.its | 108 |
| abstract_inverted_index.new | 89 |
| abstract_inverted_index.the | 16, 23, 27, 33, 62, 99, 114, 143, 159, 174, 179 |
| abstract_inverted_index.120, | 149 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.Yet, | 22 |
| abstract_inverted_index.have | 12 |
| abstract_inverted_index.more | 137 |
| abstract_inverted_index.over | 173 |
| abstract_inverted_index.self | 5 |
| abstract_inverted_index.such | 59 |
| abstract_inverted_index.that | 106, 158 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 105, 132 |
| abstract_inverted_index.RGB+D | 145, 148, 181 |
| abstract_inverted_index.X-set | 187 |
| abstract_inverted_index.X-sub | 185 |
| abstract_inverted_index.align | 98 |
| abstract_inverted_index.joint | 54 |
| abstract_inverted_index.named | 93 |
| abstract_inverted_index.novel | 48 |
| abstract_inverted_index.paper | 45 |
| abstract_inverted_index.prime | 109, 117 |
| abstract_inverted_index.steer | 85 |
| abstract_inverted_index.tasks | 156 |
| abstract_inverted_index.using | 184 |
| abstract_inverted_index.while | 111 |
| abstract_inverted_index."prime | 82 |
| abstract_inverted_index.PKUMMD | 151 |
| abstract_inverted_index.action | 10, 42, 69 |
| abstract_inverted_index.and/or | 78 |
| abstract_inverted_index.called | 125 |
| abstract_inverted_index.joints | 80, 110 |
| abstract_inverted_index.method | 124 |
| abstract_inverted_index.moving | 28, 77 |
| abstract_inverted_index.points | 172 |
| abstract_inverted_index.rarely | 37 |
| abstract_inverted_index.static | 30, 79 |
| abstract_inverted_index.subset | 74 |
| abstract_inverted_index.tapped | 38 |
| abstract_inverted_index.termed | 81 |
| abstract_inverted_index.(STJD), | 56 |
| abstract_inverted_index.STJD-CL | 94, 161 |
| abstract_inverted_index.STJD-MP | 126, 163 |
| abstract_inverted_index.aspects | 18 |
| abstract_inverted_index.between | 26 |
| abstract_inverted_index.dataset | 183 |
| abstract_inverted_index.density | 55, 66 |
| abstract_inverted_index.dynamic | 17 |
| abstract_inverted_index.joints" | 83 |
| abstract_inverted_index.joints. | 120 |
| abstract_inverted_index.methods | 177 |
| abstract_inverted_index.various | 154 |
| abstract_inverted_index.Tracking | 61 |
| abstract_inverted_index.datasets | 152 |
| abstract_inverted_index.elements | 31 |
| abstract_inverted_index.identify | 72 |
| abstract_inverted_index.improved | 164 |
| abstract_inverted_index.learning | 7, 91 |
| abstract_inverted_index.nonprime | 119 |
| abstract_inverted_index.presents | 35 |
| abstract_inverted_index.proposed | 96, 160 |
| abstract_inverted_index.quantify | 58 |
| abstract_inverted_index.referred | 50 |
| abstract_inverted_index.sequence | 104 |
| abstract_inverted_index.skeletal | 20 |
| abstract_inverted_index.skeleton | 34, 103 |
| abstract_inverted_index.strategy | 92 |
| abstract_inverted_index.addition, | 122 |
| abstract_inverted_index.developed | 128 |
| abstract_inverted_index.effective | 138 |
| abstract_inverted_index.evolution | 63 |
| abstract_inverted_index.framework | 135 |
| abstract_inverted_index.intricate | 24 |
| abstract_inverted_index.learning. | 87, 139 |
| abstract_inverted_index.potential | 40 |
| abstract_inverted_index.approaches | 1 |
| abstract_inverted_index.downstream | 155 |
| abstract_inverted_index.introduces | 46 |
| abstract_inverted_index.percentage | 171 |
| abstract_inverted_index.sequences. | 21 |
| abstract_inverted_index.supervised | 6 |
| abstract_inverted_index.throughout | 67 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.contrasting | 113 |
| abstract_inverted_index.contrastive | 90, 176 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.effectively | 71 |
| abstract_inverted_index.evaluations | 141 |
| abstract_inverted_index.integrating | 130 |
| abstract_inverted_index.interaction | 25 |
| abstract_inverted_index.Experimental | 140 |
| abstract_inverted_index.concentrated | 13 |
| abstract_inverted_index.evaluations, | 188 |
| abstract_inverted_index.interaction. | 60 |
| abstract_inverted_index.measurement, | 49 |
| abstract_inverted_index.particularly | 166 |
| abstract_inverted_index.performance, | 165 |
| abstract_inverted_index.unsupervised | 3 |
| abstract_inverted_index.predominantly | 14 |
| abstract_inverted_index.respectively. | 189 |
| abstract_inverted_index.classification | 11 |
| abstract_inverted_index.discriminative | 39, 76 |
| abstract_inverted_index.representation | 100 |
| abstract_inverted_index.simultaneously | 112 |
| abstract_inverted_index.skeleton-based | 9 |
| abstract_inverted_index.classification. | 43 |
| abstract_inverted_index.representations | 115 |
| abstract_inverted_index.self-supervised | 86 |
| abstract_inverted_index.spatial-temporal | 53 |
| abstract_inverted_index.state-of-the-art | 175 |
| abstract_inverted_index.reconstruction-based | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.14289349 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |