Spatio-Temporal Recursive Method for Traffic Flow Interpolation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/sym17091577
Traffic data sequence imputation plays a crucial role in maintaining the integrity and reliability of transportation analytics and decision-making systems. With the proliferation of sensor technologies and IoT devices, traffic data often contain missing values due to sensor failures, communication issues, or data processing errors. It is necessary to effectively interpolate these missing parts to ensure the correctness of downstream work. Compared with other data, the monitoring data of traffic flow shows significant temporal and spatial correlations. However, most methods have not fully integrated the correlations of these types. In this work, we introduce the Temporal–Spatial Fusion Neural Network (TSFNN), a framework designed to address missing data recovery in transportation monitoring by jointly modeling spatial and temporal patterns. The architecture incorporates a temporal component, implemented with a Recurrent Neural Network (RNN), to learn sequential dependencies, alongside a spatial component, implemented with a Multilayer Perceptron (MLP), to learn spatial correlations. For performance validation, the model was benchmarked against several established methods. Using real-world datasets with varying missing-data ratios, TSFNN consistently delivered more accurate interpolations than all baseline approaches, highlighting the advantage of combining temporal and spatial learning within a single framework.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym17091577
- https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351
- OA Status
- gold
- References
- 23
- OpenAlex ID
- https://openalex.org/W4414428318
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414428318Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym17091577Digital Object Identifier
- Title
-
Spatio-Temporal Recursive Method for Traffic Flow InterpolationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-21Full publication date if available
- Authors
-
Gang Wang, Yuhao Mao, Xu Liu, Haohan Liang, Keqiang LiList of authors in order
- Landing page
-
https://doi.org/10.3390/sym17091577Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414428318 |
|---|---|
| doi | https://doi.org/10.3390/sym17091577 |
| ids.doi | https://doi.org/10.3390/sym17091577 |
| ids.openalex | https://openalex.org/W4414428318 |
| fwci | 0.0 |
| type | article |
| title | Spatio-Temporal Recursive Method for Traffic Flow Interpolation |
| biblio.issue | 9 |
| biblio.volume | 17 |
| biblio.last_page | 1577 |
| biblio.first_page | 1577 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9948999881744385 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9825000166893005 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| language | en |
| locations[0].id | doi:10.3390/sym17091577 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym17091577 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100367473 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4872-844X |
| authorships[0].author.display_name | Gang Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210127216 |
| authorships[0].affiliations[1].raw_affiliation_string | Highway Monitoring and Emergency Response Center, Ministry of Transport of the P.R.C., Beijing 100029, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210127216 |
| authorships[0].institutions[0].ror | https://ror.org/031wq1t38 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210127216 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Ministry of Transport |
| authorships[0].institutions[1].id | https://openalex.org/I99065089 |
| authorships[0].institutions[1].ror | https://ror.org/03cve4549 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I99065089 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Tsinghua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gang Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Highway Monitoring and Emergency Response Center, Ministry of Transport of the P.R.C., Beijing 100029, China, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China |
| authorships[1].author.id | https://openalex.org/A5101368869 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-0520-9924 |
| authorships[1].author.display_name | Yuhao Mao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | CCSE Lab, Beihang University, Beijing 100083, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuhao Mao |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | CCSE Lab, Beihang University, Beijing 100083, China |
| authorships[2].author.id | https://openalex.org/A5103202873 |
| authorships[2].author.orcid | https://orcid.org/0009-0004-9601-610X |
| authorships[2].author.display_name | Xu Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210127216 |
| authorships[2].affiliations[0].raw_affiliation_string | Highway Monitoring and Emergency Response Center, Ministry of Transport of the P.R.C., Beijing 100029, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Economics and Management, Beihang University, Beijing 100083, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].institutions[1].id | https://openalex.org/I4210127216 |
| authorships[2].institutions[1].ror | https://ror.org/031wq1t38 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210127216 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Ministry of Transport |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xu Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Highway Monitoring and Emergency Response Center, Ministry of Transport of the P.R.C., Beijing 100029, China, School of Economics and Management, Beihang University, Beijing 100083, China |
| authorships[3].author.id | https://openalex.org/A5102937293 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-8306-6346 |
| authorships[3].author.display_name | Haohan Liang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[3].affiliations[0].raw_affiliation_string | CCSE Lab, Beihang University, Beijing 100083, China |
| authorships[3].institutions[0].id | https://openalex.org/I82880672 |
| authorships[3].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beihang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Haohan Liang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CCSE Lab, Beihang University, Beijing 100083, China |
| authorships[4].author.id | https://openalex.org/A5031855986 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9333-7416 |
| authorships[4].author.display_name | Keqiang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China |
| authorships[4].institutions[0].id | https://openalex.org/I99065089 |
| authorships[4].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tsinghua University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Keqiang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatio-Temporal Recursive Method for Traffic Flow Interpolation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/sym17091577 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym17091577 |
| primary_location.id | doi:10.3390/sym17091577 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-8994/17/9/1577/pdf?version=1758435351 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym17091577 |
| publication_date | 2025-09-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2135817141, https://openalex.org/W2264065105, https://openalex.org/W2954311687, https://openalex.org/W3123795995, https://openalex.org/W2064186732, https://openalex.org/W3008820580, https://openalex.org/W3210700896, https://openalex.org/W2964010366, https://openalex.org/W4210870838, https://openalex.org/W2896715775, https://openalex.org/W4306773900, https://openalex.org/W4385486782, https://openalex.org/W2559673340, https://openalex.org/W3214868173, https://openalex.org/W2144499799, https://openalex.org/W2517194566, https://openalex.org/W2552480641, https://openalex.org/W2410255620, https://openalex.org/W2609281545, https://openalex.org/W2505672291, https://openalex.org/W3003365835, https://openalex.org/W3017180776, https://openalex.org/W4382203079 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 5, 100, 121, 126, 136, 141, 187 |
| abstract_inverted_index.In | 89 |
| abstract_inverted_index.It | 45 |
| abstract_inverted_index.by | 111 |
| abstract_inverted_index.in | 8, 108 |
| abstract_inverted_index.is | 46 |
| abstract_inverted_index.of | 14, 23, 58, 68, 86, 180 |
| abstract_inverted_index.or | 41 |
| abstract_inverted_index.to | 36, 48, 54, 103, 131, 145 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.For | 149 |
| abstract_inverted_index.IoT | 27 |
| abstract_inverted_index.The | 118 |
| abstract_inverted_index.all | 174 |
| abstract_inverted_index.and | 12, 17, 26, 74, 115, 183 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.the | 10, 21, 56, 65, 84, 94, 152, 178 |
| abstract_inverted_index.was | 154 |
| abstract_inverted_index.With | 20 |
| abstract_inverted_index.data | 1, 30, 42, 67, 106 |
| abstract_inverted_index.flow | 70 |
| abstract_inverted_index.have | 80 |
| abstract_inverted_index.more | 170 |
| abstract_inverted_index.most | 78 |
| abstract_inverted_index.role | 7 |
| abstract_inverted_index.than | 173 |
| abstract_inverted_index.this | 90 |
| abstract_inverted_index.with | 62, 125, 140, 163 |
| abstract_inverted_index.TSFNN | 167 |
| abstract_inverted_index.Using | 160 |
| abstract_inverted_index.data, | 64 |
| abstract_inverted_index.fully | 82 |
| abstract_inverted_index.learn | 132, 146 |
| abstract_inverted_index.model | 153 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.other | 63 |
| abstract_inverted_index.parts | 53 |
| abstract_inverted_index.plays | 4 |
| abstract_inverted_index.shows | 71 |
| abstract_inverted_index.these | 51, 87 |
| abstract_inverted_index.work, | 91 |
| abstract_inverted_index.work. | 60 |
| abstract_inverted_index.(MLP), | 144 |
| abstract_inverted_index.(RNN), | 130 |
| abstract_inverted_index.Fusion | 96 |
| abstract_inverted_index.Neural | 97, 128 |
| abstract_inverted_index.ensure | 55 |
| abstract_inverted_index.sensor | 24, 37 |
| abstract_inverted_index.single | 188 |
| abstract_inverted_index.types. | 88 |
| abstract_inverted_index.values | 34 |
| abstract_inverted_index.within | 186 |
| abstract_inverted_index.Network | 98, 129 |
| abstract_inverted_index.Traffic | 0 |
| abstract_inverted_index.address | 104 |
| abstract_inverted_index.against | 156 |
| abstract_inverted_index.contain | 32 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.errors. | 44 |
| abstract_inverted_index.issues, | 40 |
| abstract_inverted_index.jointly | 112 |
| abstract_inverted_index.methods | 79 |
| abstract_inverted_index.missing | 33, 52, 105 |
| abstract_inverted_index.ratios, | 166 |
| abstract_inverted_index.several | 157 |
| abstract_inverted_index.spatial | 75, 114, 137, 147, 184 |
| abstract_inverted_index.traffic | 29, 69 |
| abstract_inverted_index.varying | 164 |
| abstract_inverted_index.(TSFNN), | 99 |
| abstract_inverted_index.Compared | 61 |
| abstract_inverted_index.However, | 77 |
| abstract_inverted_index.accurate | 171 |
| abstract_inverted_index.baseline | 175 |
| abstract_inverted_index.datasets | 162 |
| abstract_inverted_index.designed | 102 |
| abstract_inverted_index.devices, | 28 |
| abstract_inverted_index.learning | 185 |
| abstract_inverted_index.methods. | 159 |
| abstract_inverted_index.modeling | 113 |
| abstract_inverted_index.recovery | 107 |
| abstract_inverted_index.sequence | 2 |
| abstract_inverted_index.systems. | 19 |
| abstract_inverted_index.temporal | 73, 116, 122, 182 |
| abstract_inverted_index.Recurrent | 127 |
| abstract_inverted_index.advantage | 179 |
| abstract_inverted_index.alongside | 135 |
| abstract_inverted_index.analytics | 16 |
| abstract_inverted_index.combining | 181 |
| abstract_inverted_index.delivered | 169 |
| abstract_inverted_index.failures, | 38 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.integrity | 11 |
| abstract_inverted_index.introduce | 93 |
| abstract_inverted_index.necessary | 47 |
| abstract_inverted_index.patterns. | 117 |
| abstract_inverted_index.Multilayer | 142 |
| abstract_inverted_index.Perceptron | 143 |
| abstract_inverted_index.component, | 123, 138 |
| abstract_inverted_index.downstream | 59 |
| abstract_inverted_index.framework. | 189 |
| abstract_inverted_index.imputation | 3 |
| abstract_inverted_index.integrated | 83 |
| abstract_inverted_index.monitoring | 66, 110 |
| abstract_inverted_index.processing | 43 |
| abstract_inverted_index.real-world | 161 |
| abstract_inverted_index.sequential | 133 |
| abstract_inverted_index.approaches, | 176 |
| abstract_inverted_index.benchmarked | 155 |
| abstract_inverted_index.correctness | 57 |
| abstract_inverted_index.effectively | 49 |
| abstract_inverted_index.established | 158 |
| abstract_inverted_index.implemented | 124, 139 |
| abstract_inverted_index.interpolate | 50 |
| abstract_inverted_index.maintaining | 9 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.reliability | 13 |
| abstract_inverted_index.significant | 72 |
| abstract_inverted_index.validation, | 151 |
| abstract_inverted_index.architecture | 119 |
| abstract_inverted_index.consistently | 168 |
| abstract_inverted_index.correlations | 85 |
| abstract_inverted_index.highlighting | 177 |
| abstract_inverted_index.incorporates | 120 |
| abstract_inverted_index.missing-data | 165 |
| abstract_inverted_index.technologies | 25 |
| abstract_inverted_index.communication | 39 |
| abstract_inverted_index.correlations. | 76, 148 |
| abstract_inverted_index.dependencies, | 134 |
| abstract_inverted_index.proliferation | 22 |
| abstract_inverted_index.interpolations | 172 |
| abstract_inverted_index.transportation | 15, 109 |
| abstract_inverted_index.decision-making | 18 |
| abstract_inverted_index.Temporal–Spatial | 95 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5101368869 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I82880672 |
| citation_normalized_percentile.value | 0.50630043 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |