Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1126/sciadv.adl2767
Neuromorphic speech recognition systems that use spiking neural networks (SNNs) and memristors are progressing in hardware development. The conventional manual preprocessing of audio signals is shifting toward event-based recognition with convolutional SNNs. Despite achieving high accuracy in classification, the efficient extraction of spatiotemporal features from audio events continues to be a substantial challenge. In this study, we introduce dynamic time-surface neurons (DTSNs) using volatile memristors featuring an adjustable temporal kernel decay, enabled by series-connected transistors with an Au/LiCoO 2 /Au configuration. DTSNs act as feature descriptors, enhancing the spatiotemporal feature extraction from event audio data. A two-layer SNN classifier, fully connected and incorporating a 1T1R nonvolatile memristor array, is trained to recognize the spatiotemporal features of the audio data. Our findings show classification accuracies of up to 95.91%, substantial improvements in computational efficiency, and increased noise resilience, confirming the promise of our memristor-based speech recognition system for practical applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1126/sciadv.adl2767
- https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=true
- OA Status
- gold
- Cited By
- 20
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393853187
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393853187Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1126/sciadv.adl2767Digital Object Identifier
- Title
-
Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neuronsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-03Full publication date if available
- Authors
-
Xulei Wu, Bingjie Dang, Teng Zhang, Xiulong Wu, Yuchao YangList of authors in order
- Landing page
-
https://doi.org/10.1126/sciadv.adl2767Publisher landing page
- PDF URL
-
https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=trueDirect OA link when available
- Concepts
-
Memristor, Computer science, Feature extraction, Extraction (chemistry), Feature (linguistics), Artificial intelligence, Pattern recognition (psychology), Chemistry, Engineering, Electronic engineering, Chromatography, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
20Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 17, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393853187 |
|---|---|
| doi | https://doi.org/10.1126/sciadv.adl2767 |
| ids.doi | https://doi.org/10.1126/sciadv.adl2767 |
| ids.openalex | https://openalex.org/W4393853187 |
| fwci | 7.38336945 |
| type | article |
| title | Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons |
| biblio.issue | 14 |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| topics[2].id | https://openalex.org/T11665 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9905999898910522 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1309 |
| topics[2].subfield.display_name | Developmental Biology |
| topics[2].display_name | Animal Vocal Communication and Behavior |
| is_xpac | False |
| apc_list.value | 4500 |
| apc_list.currency | USD |
| apc_list.value_usd | 4500 |
| apc_paid.value | 4500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4500 |
| concepts[0].id | https://openalex.org/C150072547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7178130745887756 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q212923 |
| concepts[0].display_name | Memristor |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6353442072868347 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C52622490 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5495386123657227 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[2].display_name | Feature extraction |
| concepts[3].id | https://openalex.org/C4725764 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5473419427871704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[3].display_name | Extraction (chemistry) |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5079658627510071 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4418221116065979 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3558621406555176 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C185592680 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09284427762031555 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[7].display_name | Chemistry |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08090132474899292 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C24326235 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07865262031555176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[9].display_name | Electronic engineering |
| concepts[10].id | https://openalex.org/C43617362 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[10].display_name | Chromatography |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C41895202 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[12].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/memristor |
| keywords[0].score | 0.7178130745887756 |
| keywords[0].display_name | Memristor |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6353442072868347 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/feature-extraction |
| keywords[2].score | 0.5495386123657227 |
| keywords[2].display_name | Feature extraction |
| keywords[3].id | https://openalex.org/keywords/extraction |
| keywords[3].score | 0.5473419427871704 |
| keywords[3].display_name | Extraction (chemistry) |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5079658627510071 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4418221116065979 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3558621406555176 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/chemistry |
| keywords[7].score | 0.09284427762031555 |
| keywords[7].display_name | Chemistry |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.08090132474899292 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/electronic-engineering |
| keywords[9].score | 0.07865262031555176 |
| keywords[9].display_name | Electronic engineering |
| language | en |
| locations[0].id | doi:10.1126/sciadv.adl2767 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737427234 |
| locations[0].source.issn | 2375-2548 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2375-2548 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Science Advances |
| locations[0].source.host_organization | https://openalex.org/P4310315823 |
| locations[0].source.host_organization_name | American Association for the Advancement of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315823 |
| locations[0].source.host_organization_lineage_names | American Association for the Advancement of Science |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Science Advances |
| locations[0].landing_page_url | https://doi.org/10.1126/sciadv.adl2767 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10990261 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sci Adv |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10990261 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072871055 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9999-322X |
| authorships[0].author.display_name | Xulei Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Integrated Circuits, Anhui University, Hefei 230601, China. |
| authorships[0].institutions[0].id | https://openalex.org/I143868143 |
| authorships[0].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xulei Wu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Integrated Circuits, Anhui University, Hefei 230601, China. |
| authorships[1].author.id | https://openalex.org/A5010291266 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Bingjie Dang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China. |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bingjie Dang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China. |
| authorships[2].author.id | https://openalex.org/A5100372519 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2011-5940 |
| authorships[2].author.display_name | Teng Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China. |
| authorships[2].institutions[0].id | https://openalex.org/I20231570 |
| authorships[2].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Teng Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China. |
| authorships[3].author.id | https://openalex.org/A5037391840 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5012-2570 |
| authorships[3].author.display_name | Xiulong Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Integrated Circuits, Anhui University, Hefei 230601, China. |
| authorships[3].institutions[0].id | https://openalex.org/I143868143 |
| authorships[3].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Anhui University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiulong Wu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Integrated Circuits, Anhui University, Hefei 230601, China. |
| authorships[4].author.id | https://openalex.org/A5057584787 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4674-4059 |
| authorships[4].author.display_name | Yuchao Yang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China. |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[4].affiliations[1].raw_affiliation_string | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China. |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210115644 |
| authorships[4].affiliations[2].raw_affiliation_string | Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing 102206, China. |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I20231570 |
| authorships[4].affiliations[3].raw_affiliation_string | School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China. |
| authorships[4].institutions[0].id | https://openalex.org/I4210115644 |
| authorships[4].institutions[0].ror | https://ror.org/029819q61 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210115644 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Chinese Institute for Brain Research |
| authorships[4].institutions[1].id | https://openalex.org/I20231570 |
| authorships[4].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Peking University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yuchao Yang |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China., Center for Brain Inspired Chips, Institute for Artificial Intelligence, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China., Center for Brain Inspired Intelligence, Chinese Institute for Brain Research (CIBR), Beijing, Beijing 102206, China., School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spatiotemporal audio feature extraction with dynamic memristor-based time-surface neurons |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W4386159726, https://openalex.org/W2601157893, https://openalex.org/W2131735617, https://openalex.org/W2373006798, https://openalex.org/W2056912418, https://openalex.org/W2123759770, https://openalex.org/W2033213769, https://openalex.org/W2811390910, https://openalex.org/W4312376745, https://openalex.org/W2136016640 |
| cited_by_count | 20 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 17 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1126/sciadv.adl2767 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737427234 |
| best_oa_location.source.issn | 2375-2548 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2375-2548 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Science Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310315823 |
| best_oa_location.source.host_organization_name | American Association for the Advancement of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315823 |
| best_oa_location.source.host_organization_lineage_names | American Association for the Advancement of Science |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Science Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1126/sciadv.adl2767 |
| primary_location.id | doi:10.1126/sciadv.adl2767 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737427234 |
| primary_location.source.issn | 2375-2548 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2375-2548 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Science Advances |
| primary_location.source.host_organization | https://openalex.org/P4310315823 |
| primary_location.source.host_organization_name | American Association for the Advancement of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315823 |
| primary_location.source.host_organization_lineage_names | American Association for the Advancement of Science |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.science.org/doi/pdf/10.1126/sciadv.adl2767?download=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Science Advances |
| primary_location.landing_page_url | https://doi.org/10.1126/sciadv.adl2767 |
| publication_date | 2024-04-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2143612262, https://openalex.org/W3200928000, https://openalex.org/W2062826588, https://openalex.org/W2006817281, https://openalex.org/W2893341068, https://openalex.org/W3197464192, https://openalex.org/W3043133474, https://openalex.org/W2772397789, https://openalex.org/W2979589704, https://openalex.org/W4366506645, https://openalex.org/W4281628293, https://openalex.org/W2790788952, https://openalex.org/W3022766987, https://openalex.org/W3206817059, https://openalex.org/W4386157910, https://openalex.org/W2990793844, https://openalex.org/W2006370340, https://openalex.org/W2130459697, https://openalex.org/W2038786761, https://openalex.org/W3122214732, https://openalex.org/W3180917267, https://openalex.org/W4386100686, https://openalex.org/W2469278928, https://openalex.org/W4293463084, https://openalex.org/W2980513133, https://openalex.org/W4297094906, https://openalex.org/W2141114982, https://openalex.org/W2135480833, https://openalex.org/W2800161635, https://openalex.org/W1972698437, https://openalex.org/W4305015511, https://openalex.org/W4289519101, https://openalex.org/W3003821665, https://openalex.org/W4224244006, https://openalex.org/W6811016092, https://openalex.org/W3208837559, https://openalex.org/W4205804651, https://openalex.org/W2621826044, https://openalex.org/W4386065358, https://openalex.org/W4393598056, https://openalex.org/W4393461606, https://openalex.org/W4281644611, https://openalex.org/W2255969142, https://openalex.org/W2292153326, https://openalex.org/W3124546450, https://openalex.org/W4387265305, https://openalex.org/W2153793371, https://openalex.org/W2292965952, https://openalex.org/W2514338478, https://openalex.org/W4309423061 |
| referenced_works_count | 50 |
| abstract_inverted_index.2 | 78 |
| abstract_inverted_index.A | 95 |
| abstract_inverted_index.a | 50, 103 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.an | 66, 76 |
| abstract_inverted_index.as | 83 |
| abstract_inverted_index.be | 49 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.in | 14, 36, 130 |
| abstract_inverted_index.is | 24, 108 |
| abstract_inverted_index.of | 21, 41, 115, 124, 140 |
| abstract_inverted_index.to | 48, 110, 126 |
| abstract_inverted_index.up | 125 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index./Au | 79 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.SNN | 97 |
| abstract_inverted_index.The | 17 |
| abstract_inverted_index.act | 82 |
| abstract_inverted_index.and | 10, 101, 133 |
| abstract_inverted_index.are | 12 |
| abstract_inverted_index.for | 146 |
| abstract_inverted_index.our | 141 |
| abstract_inverted_index.the | 38, 87, 112, 116, 138 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.1T1R | 104 |
| abstract_inverted_index.from | 44, 91 |
| abstract_inverted_index.high | 34 |
| abstract_inverted_index.show | 121 |
| abstract_inverted_index.that | 4 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.with | 29, 75 |
| abstract_inverted_index.DTSNs | 81 |
| abstract_inverted_index.SNNs. | 31 |
| abstract_inverted_index.audio | 22, 45, 93, 117 |
| abstract_inverted_index.data. | 94, 118 |
| abstract_inverted_index.event | 92 |
| abstract_inverted_index.fully | 99 |
| abstract_inverted_index.noise | 135 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.(SNNs) | 9 |
| abstract_inverted_index.array, | 107 |
| abstract_inverted_index.decay, | 70 |
| abstract_inverted_index.events | 46 |
| abstract_inverted_index.kernel | 69 |
| abstract_inverted_index.manual | 19 |
| abstract_inverted_index.neural | 7 |
| abstract_inverted_index.speech | 1, 143 |
| abstract_inverted_index.study, | 55 |
| abstract_inverted_index.system | 145 |
| abstract_inverted_index.toward | 26 |
| abstract_inverted_index.(DTSNs) | 61 |
| abstract_inverted_index.95.91%, | 127 |
| abstract_inverted_index.Despite | 32 |
| abstract_inverted_index.dynamic | 58 |
| abstract_inverted_index.enabled | 71 |
| abstract_inverted_index.feature | 84, 89 |
| abstract_inverted_index.neurons | 60 |
| abstract_inverted_index.promise | 139 |
| abstract_inverted_index.signals | 23 |
| abstract_inverted_index.spiking | 6 |
| abstract_inverted_index.systems | 3 |
| abstract_inverted_index.trained | 109 |
| abstract_inverted_index.Au/LiCoO | 77 |
| abstract_inverted_index.accuracy | 35 |
| abstract_inverted_index.features | 43, 114 |
| abstract_inverted_index.findings | 120 |
| abstract_inverted_index.hardware | 15 |
| abstract_inverted_index.networks | 8 |
| abstract_inverted_index.shifting | 25 |
| abstract_inverted_index.temporal | 68 |
| abstract_inverted_index.volatile | 63 |
| abstract_inverted_index.achieving | 33 |
| abstract_inverted_index.connected | 100 |
| abstract_inverted_index.continues | 47 |
| abstract_inverted_index.efficient | 39 |
| abstract_inverted_index.enhancing | 86 |
| abstract_inverted_index.featuring | 65 |
| abstract_inverted_index.increased | 134 |
| abstract_inverted_index.introduce | 57 |
| abstract_inverted_index.memristor | 106 |
| abstract_inverted_index.practical | 147 |
| abstract_inverted_index.recognize | 111 |
| abstract_inverted_index.two-layer | 96 |
| abstract_inverted_index.accuracies | 123 |
| abstract_inverted_index.adjustable | 67 |
| abstract_inverted_index.challenge. | 52 |
| abstract_inverted_index.confirming | 137 |
| abstract_inverted_index.extraction | 40, 90 |
| abstract_inverted_index.memristors | 11, 64 |
| abstract_inverted_index.classifier, | 98 |
| abstract_inverted_index.efficiency, | 132 |
| abstract_inverted_index.event-based | 27 |
| abstract_inverted_index.nonvolatile | 105 |
| abstract_inverted_index.progressing | 13 |
| abstract_inverted_index.recognition | 2, 28, 144 |
| abstract_inverted_index.resilience, | 136 |
| abstract_inverted_index.substantial | 51, 128 |
| abstract_inverted_index.transistors | 74 |
| abstract_inverted_index.Neuromorphic | 0 |
| abstract_inverted_index.conventional | 18 |
| abstract_inverted_index.descriptors, | 85 |
| abstract_inverted_index.development. | 16 |
| abstract_inverted_index.improvements | 129 |
| abstract_inverted_index.time-surface | 59 |
| abstract_inverted_index.applications. | 148 |
| abstract_inverted_index.computational | 131 |
| abstract_inverted_index.convolutional | 30 |
| abstract_inverted_index.incorporating | 102 |
| abstract_inverted_index.preprocessing | 20 |
| abstract_inverted_index.classification | 122 |
| abstract_inverted_index.configuration. | 80 |
| abstract_inverted_index.spatiotemporal | 42, 88, 113 |
| abstract_inverted_index.classification, | 37 |
| abstract_inverted_index.memristor-based | 142 |
| abstract_inverted_index.series-connected | 73 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5010291266, https://openalex.org/A5057584787, https://openalex.org/A5072871055, https://openalex.org/A5037391840 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I143868143, https://openalex.org/I20231570, https://openalex.org/I4210115644 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.96438813 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |