SPATIOTEMPORAL RECOVERY OF HIMAWARI-8 HOURLY AEROSOL OPTICAL DEPTH PRODUCTS VIA THE NESTED BAYESIAN MAXIMUM ENTROPY METHOD Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022
Satellite-derived aerosol optical depth (AOD) is an indispensable parameter when conducting studies related to atmospheric environment, climate change, and biogeochemical cycle. However, current satellite-derived AOD products are limited in related applications due to the large proportion of missing data, and the existed methods mainly concentrate on recovering AOD from polar-orbit satellite sensors. In order to solve these issues and take full use of the preponderance of geostationary satellite sensors in high frequency observation, we propose a spatiotemporal AOD recovery framework integrating multi-time scale AOD products based on the nested Bayesian maximum entropy methodology (NBME), aimed to obtain satellite-derived AOD datasets with low data missing and high accuracy. The experiment results show that the spatial coverage of AOD datasets increases from 20.5% to 70.0%, and the R2 and RMSE of the recovered AOD against ground-based AERONET AOD are approximately 0.62 and 0.19, respectively. Moreover, the further simulated experiments indicate that the proposed method also performs better relatively when comparing with other popular recovery methods. Therefore, the proposed NBME recovery method can obtain a more convincing product both in applicable accuracy and visual quality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdf
- OA Status
- diamond
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281756959
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281756959Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022Digital Object Identifier
- Title
-
SPATIOTEMPORAL RECOVERY OF HIMAWARI-8 HOURLY AEROSOL OPTICAL DEPTH PRODUCTS VIA THE NESTED BAYESIAN MAXIMUM ENTROPY METHODWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-30Full publication date if available
- Authors
-
Xinghui Xia, Zhi Zhu, Tianhao Zhang, Gaohui Wei, Y. JiList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdfDirect OA link when available
- Concepts
-
Environmental science, Geostationary orbit, Satellite, AERONET, Meteorology, Remote sensing, Aerosol, Computer science, Geography, Aerospace engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281756959 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| ids.openalex | https://openalex.org/W4281756959 |
| fwci | 0.0 |
| type | article |
| title | SPATIOTEMPORAL RECOVERY OF HIMAWARI-8 HOURLY AEROSOL OPTICAL DEPTH PRODUCTS VIA THE NESTED BAYESIAN MAXIMUM ENTROPY METHOD |
| biblio.issue | |
| biblio.volume | XLIII-B3-2022 |
| biblio.last_page | 550 |
| biblio.first_page | 545 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9728999733924866 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10347 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9659000039100647 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Atmospheric aerosols and clouds |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7131934762001038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C16405173 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6981156468391418 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192316 |
| concepts[1].display_name | Geostationary orbit |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5973232388496399 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C2777634575 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4679739773273468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q291476 |
| concepts[3].display_name | AERONET |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4642430543899536 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4431367814540863 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C2779345167 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4106348752975464 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q104541 |
| concepts[6].display_name | Aerosol |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.39740708470344543 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0966637134552002 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C146978453 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[9].display_name | Aerospace engineering |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.7131934762001038 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/geostationary-orbit |
| keywords[1].score | 0.6981156468391418 |
| keywords[1].display_name | Geostationary orbit |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.5973232388496399 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/aeronet |
| keywords[3].score | 0.4679739773273468 |
| keywords[3].display_name | AERONET |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.4642430543899536 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.4431367814540863 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/aerosol |
| keywords[6].score | 0.4106348752975464 |
| keywords[6].display_name | Aerosol |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.39740708470344543 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.0966637134552002 |
| keywords[8].display_name | Geography |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| locations[1].id | pmh:oai:doaj.org/article:009c4437874446268ca081396033eb0b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B3-2022, Pp 545-550 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/009c4437874446268ca081396033eb0b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5068004315 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8663-6346 |
| authorships[0].author.display_name | Xinghui Xia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P.R. China |
| authorships[0].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[0].institutions[1].id | https://openalex.org/I37461747 |
| authorships[0].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | X. Xia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P.R. China |
| authorships[1].author.id | https://openalex.org/A5034876788 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2804-5230 |
| authorships[1].author.display_name | Zhi Zhu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210121573, https://openalex.org/I4400600924 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Information Science and Engineering, Wuchang Shouyi University, Wuhan, P.R. China |
| authorships[1].institutions[0].id | https://openalex.org/I4400600924 |
| authorships[1].institutions[0].ror | https://ror.org/02ny5za58 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4400600924 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Wuchang Shouyi University |
| authorships[1].institutions[1].id | https://openalex.org/I4210121573 |
| authorships[1].institutions[1].ror | https://ror.org/02mqsna37 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210121573 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Wuchang University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Z. Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Information Science and Engineering, Wuchang Shouyi University, Wuhan, P.R. China |
| authorships[2].author.id | https://openalex.org/A5100669569 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3456-8262 |
| authorships[2].author.display_name | Tianhao Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37461747, https://openalex.org/I4210118728 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P.R. China |
| authorships[2].institutions[0].id | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].ror | https://ror.org/02bpap860 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210118728 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing |
| authorships[2].institutions[1].id | https://openalex.org/I37461747 |
| authorships[2].institutions[1].ror | https://ror.org/033vjfk17 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I37461747 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | T. Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P.R. China |
| authorships[3].author.id | https://openalex.org/A5071501209 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4795-1781 |
| authorships[3].author.display_name | Gaohui Wei |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[3].affiliations[0].raw_affiliation_string | Electronic Information School, Wuhan University, Wuhan, P.R. China |
| authorships[3].institutions[0].id | https://openalex.org/I37461747 |
| authorships[3].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuhan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | G. Wei |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electronic Information School, Wuhan University, Wuhan, P.R. China |
| authorships[4].author.id | https://openalex.org/A5054227220 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Y. Ji |
| authorships[4].affiliations[0].raw_affiliation_string | Wuhan Geomatics Institute, Wuhan, P.R. China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Y. Ji |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Wuhan Geomatics Institute, Wuhan, P.R. China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SPATIOTEMPORAL RECOVERY OF HIMAWARI-8 HOURLY AEROSOL OPTICAL DEPTH PRODUCTS VIA THE NESTED BAYESIAN MAXIMUM ENTROPY METHOD |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W1988447094, https://openalex.org/W2418673772, https://openalex.org/W2145265567, https://openalex.org/W2014316009, https://openalex.org/W2750830902, https://openalex.org/W2086153848, https://openalex.org/W2592638685, https://openalex.org/W220012687, https://openalex.org/W2727061298, https://openalex.org/W2150897670 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| primary_location.id | doi:10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2022/545/2022/isprs-archives-XLIII-B3-2022-545-2022.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xliii-b3-2022-545-2022 |
| publication_date | 2022-05-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W834995658, https://openalex.org/W6617353281, https://openalex.org/W1978343218, https://openalex.org/W2001829867, https://openalex.org/W2126593701, https://openalex.org/W2171397774, https://openalex.org/W2021394581, https://openalex.org/W6658723161, https://openalex.org/W2046745272, https://openalex.org/W2024103932, https://openalex.org/W6683313646, https://openalex.org/W2042161783, https://openalex.org/W2006920938, https://openalex.org/W2104794450, https://openalex.org/W2132111132, https://openalex.org/W6677868627, https://openalex.org/W6648982606, https://openalex.org/W1992985959, https://openalex.org/W2313264137, https://openalex.org/W2095495329, https://openalex.org/W2981768155, https://openalex.org/W3129167970, https://openalex.org/W1996922035, https://openalex.org/W2160912879, https://openalex.org/W2794543278, https://openalex.org/W2604639416, https://openalex.org/W2913491289, https://openalex.org/W6765094432, https://openalex.org/W2032558547, https://openalex.org/W2105463749, https://openalex.org/W2112471372, https://openalex.org/W4245717931, https://openalex.org/W2993383518, https://openalex.org/W4253827613, https://openalex.org/W4255767766, https://openalex.org/W2158426942, https://openalex.org/W2138257363, https://openalex.org/W2119744638, https://openalex.org/W2954264374 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 76, 172 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.R2 | 126 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.in | 29, 70, 177 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 37, 63, 66, 116, 129 |
| abstract_inverted_index.on | 46, 87 |
| abstract_inverted_index.to | 14, 33, 55, 96, 122 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.AOD | 25, 48, 78, 84, 99, 117, 132, 136 |
| abstract_inverted_index.The | 108 |
| abstract_inverted_index.and | 19, 40, 59, 105, 124, 127, 140, 180 |
| abstract_inverted_index.are | 27, 137 |
| abstract_inverted_index.can | 170 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.low | 102 |
| abstract_inverted_index.the | 34, 41, 64, 88, 113, 125, 130, 144, 150, 165 |
| abstract_inverted_index.use | 62 |
| abstract_inverted_index.0.62 | 139 |
| abstract_inverted_index.NBME | 167 |
| abstract_inverted_index.RMSE | 128 |
| abstract_inverted_index.also | 153 |
| abstract_inverted_index.both | 176 |
| abstract_inverted_index.data | 103 |
| abstract_inverted_index.from | 49, 120 |
| abstract_inverted_index.full | 61 |
| abstract_inverted_index.high | 71, 106 |
| abstract_inverted_index.more | 173 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.take | 60 |
| abstract_inverted_index.that | 112, 149 |
| abstract_inverted_index.when | 10, 157 |
| abstract_inverted_index.with | 101, 159 |
| abstract_inverted_index.(AOD) | 5 |
| abstract_inverted_index.0.19, | 141 |
| abstract_inverted_index.20.5% | 121 |
| abstract_inverted_index.aimed | 95 |
| abstract_inverted_index.based | 86 |
| abstract_inverted_index.data, | 39 |
| abstract_inverted_index.depth | 4 |
| abstract_inverted_index.large | 35 |
| abstract_inverted_index.order | 54 |
| abstract_inverted_index.other | 160 |
| abstract_inverted_index.scale | 83 |
| abstract_inverted_index.solve | 56 |
| abstract_inverted_index.these | 57 |
| abstract_inverted_index.70.0%, | 123 |
| abstract_inverted_index.better | 155 |
| abstract_inverted_index.cycle. | 21 |
| abstract_inverted_index.issues | 58 |
| abstract_inverted_index.mainly | 44 |
| abstract_inverted_index.method | 152, 169 |
| abstract_inverted_index.nested | 89 |
| abstract_inverted_index.obtain | 97, 171 |
| abstract_inverted_index.visual | 181 |
| abstract_inverted_index.(NBME), | 94 |
| abstract_inverted_index.AERONET | 135 |
| abstract_inverted_index.aerosol | 2 |
| abstract_inverted_index.against | 133 |
| abstract_inverted_index.change, | 18 |
| abstract_inverted_index.climate | 17 |
| abstract_inverted_index.current | 23 |
| abstract_inverted_index.entropy | 92 |
| abstract_inverted_index.existed | 42 |
| abstract_inverted_index.further | 145 |
| abstract_inverted_index.limited | 28 |
| abstract_inverted_index.maximum | 91 |
| abstract_inverted_index.methods | 43 |
| abstract_inverted_index.missing | 38, 104 |
| abstract_inverted_index.optical | 3 |
| abstract_inverted_index.popular | 161 |
| abstract_inverted_index.product | 175 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.related | 13, 30 |
| abstract_inverted_index.results | 110 |
| abstract_inverted_index.sensors | 69 |
| abstract_inverted_index.spatial | 114 |
| abstract_inverted_index.studies | 12 |
| abstract_inverted_index.Bayesian | 90 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.accuracy | 179 |
| abstract_inverted_index.coverage | 115 |
| abstract_inverted_index.datasets | 100, 118 |
| abstract_inverted_index.indicate | 148 |
| abstract_inverted_index.methods. | 163 |
| abstract_inverted_index.performs | 154 |
| abstract_inverted_index.products | 26, 85 |
| abstract_inverted_index.proposed | 151, 166 |
| abstract_inverted_index.quality. | 182 |
| abstract_inverted_index.recovery | 79, 162, 168 |
| abstract_inverted_index.sensors. | 52 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Moreover, | 143 |
| abstract_inverted_index.accuracy. | 107 |
| abstract_inverted_index.comparing | 158 |
| abstract_inverted_index.framework | 80 |
| abstract_inverted_index.frequency | 72 |
| abstract_inverted_index.increases | 119 |
| abstract_inverted_index.parameter | 9 |
| abstract_inverted_index.recovered | 131 |
| abstract_inverted_index.satellite | 51, 68 |
| abstract_inverted_index.simulated | 146 |
| abstract_inverted_index.Therefore, | 164 |
| abstract_inverted_index.applicable | 178 |
| abstract_inverted_index.conducting | 11 |
| abstract_inverted_index.convincing | 174 |
| abstract_inverted_index.experiment | 109 |
| abstract_inverted_index.multi-time | 82 |
| abstract_inverted_index.proportion | 36 |
| abstract_inverted_index.recovering | 47 |
| abstract_inverted_index.relatively | 156 |
| abstract_inverted_index.atmospheric | 15 |
| abstract_inverted_index.concentrate | 45 |
| abstract_inverted_index.experiments | 147 |
| abstract_inverted_index.integrating | 81 |
| abstract_inverted_index.methodology | 93 |
| abstract_inverted_index.polar-orbit | 50 |
| abstract_inverted_index.applications | 31 |
| abstract_inverted_index.environment, | 16 |
| abstract_inverted_index.ground-based | 134 |
| abstract_inverted_index.observation, | 73 |
| abstract_inverted_index.approximately | 138 |
| abstract_inverted_index.geostationary | 67 |
| abstract_inverted_index.indispensable | 8 |
| abstract_inverted_index.preponderance | 65 |
| abstract_inverted_index.respectively. | 142 |
| abstract_inverted_index.biogeochemical | 20 |
| abstract_inverted_index.spatiotemporal | 77 |
| abstract_inverted_index.Satellite-derived | 1 |
| abstract_inverted_index.satellite-derived | 24, 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.05757669 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |