Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3390/rs11101184
Synthetic aperture radar (SAR) images map Earth’s surface at high resolution, regardless of the weather conditions or sunshine phenomena. Therefore, SAR images have applications in various fields. Speckle noise, which has the characteristic of multiplicative noise, degrades the image quality of SAR images, which causes information loss. This study proposes a speckle noise reduction algorithm while using the speckle reducing anisotropic diffusion (SRAD) filter, discrete wavelet transform (DWT), soft threshold, improved guided filter (IGF), and guided filter (GF), with the aim of removing speckle noise. First, the SRAD filter is applied to the SAR images, and a logarithmic transform is used to convert multiplicative noise in the resulting SRAD image into additive noise. A two-level DWT is used to divide the resulting SRAD image into one low-frequency and six high-frequency sub-band images. To remove the additive noise and preserve edge information, horizontal and vertical sub-band images employ the soft threshold; the diagonal sub-band images employ the IGF; while, the low- frequency sub-band image removes additive noise using the GF. The experiments used both standard and real SAR images. The experimental results reveal that the proposed method, in comparison to state-of-the art methods, obtains excellent speckle noise removal, while preserving the edges and maintaining low computational complexity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs11101184
- https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378
- OA Status
- gold
- Cited By
- 116
- References
- 66
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2945177640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2945177640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs11101184Digital Object Identifier
- Title
-
Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet TransformWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-18Full publication date if available
- Authors
-
Hyun-Ho Choi, Jechang JeongList of authors in order
- Landing page
-
https://doi.org/10.3390/rs11101184Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378Direct OA link when available
- Concepts
-
Speckle noise, Multiplicative noise, Artificial intelligence, Computer vision, Computer science, Anisotropic diffusion, Synthetic aperture radar, Noise (video), Speckle pattern, Filter (signal processing), Image noise, Noise reduction, Image (mathematics), Telecommunications, Signal transfer function, Transmission (telecommunications), Analog signalTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
116Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 20, 2024: 21, 2023: 20, 2022: 20, 2021: 24Per-year citation counts (last 5 years)
- References (count)
-
66Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2945177640 |
|---|---|
| doi | https://doi.org/10.3390/rs11101184 |
| ids.doi | https://doi.org/10.3390/rs11101184 |
| ids.mag | 2945177640 |
| ids.openalex | https://openalex.org/W2945177640 |
| fwci | 5.87871665 |
| type | article |
| title | Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform |
| biblio.issue | 10 |
| biblio.volume | 11 |
| biblio.last_page | 1184 |
| biblio.first_page | 1184 |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T11105 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image Processing Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C180940675 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7819455862045288 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7575045 |
| concepts[0].display_name | Speckle noise |
| concepts[1].id | https://openalex.org/C18015164 |
| concepts[1].level | 5 |
| concepts[1].score | 0.6247285008430481 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6935000 |
| concepts[1].display_name | Multiplicative noise |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.565485954284668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5633755922317505 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5582964420318604 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C203504353 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5512486696243286 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4765461 |
| concepts[5].display_name | Anisotropic diffusion |
| concepts[6].id | https://openalex.org/C87360688 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5495555996894836 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[6].display_name | Synthetic aperture radar |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5425981879234314 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C102290492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5246541500091553 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7575045 |
| concepts[8].display_name | Speckle pattern |
| concepts[9].id | https://openalex.org/C106131492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49991726875305176 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[9].display_name | Filter (signal processing) |
| concepts[10].id | https://openalex.org/C35772409 |
| concepts[10].level | 3 |
| concepts[10].score | 0.42663463950157166 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1323086 |
| concepts[10].display_name | Image noise |
| concepts[11].id | https://openalex.org/C163294075 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41984492540359497 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[11].display_name | Noise reduction |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.19454273581504822 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11094406247138977 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C131021393 |
| concepts[14].level | 4 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7512759 |
| concepts[14].display_name | Signal transfer function |
| concepts[15].id | https://openalex.org/C761482 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[15].display_name | Transmission (telecommunications) |
| concepts[16].id | https://openalex.org/C13412647 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q174948 |
| concepts[16].display_name | Analog signal |
| keywords[0].id | https://openalex.org/keywords/speckle-noise |
| keywords[0].score | 0.7819455862045288 |
| keywords[0].display_name | Speckle noise |
| keywords[1].id | https://openalex.org/keywords/multiplicative-noise |
| keywords[1].score | 0.6247285008430481 |
| keywords[1].display_name | Multiplicative noise |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.565485954284668 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5633755922317505 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5582964420318604 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/anisotropic-diffusion |
| keywords[5].score | 0.5512486696243286 |
| keywords[5].display_name | Anisotropic diffusion |
| keywords[6].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[6].score | 0.5495555996894836 |
| keywords[6].display_name | Synthetic aperture radar |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.5425981879234314 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/speckle-pattern |
| keywords[8].score | 0.5246541500091553 |
| keywords[8].display_name | Speckle pattern |
| keywords[9].id | https://openalex.org/keywords/filter |
| keywords[9].score | 0.49991726875305176 |
| keywords[9].display_name | Filter (signal processing) |
| keywords[10].id | https://openalex.org/keywords/image-noise |
| keywords[10].score | 0.42663463950157166 |
| keywords[10].display_name | Image noise |
| keywords[11].id | https://openalex.org/keywords/noise-reduction |
| keywords[11].score | 0.41984492540359497 |
| keywords[11].display_name | Noise reduction |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.19454273581504822 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.11094406247138977 |
| keywords[13].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/rs11101184 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs11101184 |
| locations[1].id | pmh:oai:doaj.org/article:078a09f997054745b3f84957d091d7de |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 11, Iss 10, p 1184 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/078a09f997054745b3f84957d091d7de |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/11/10/1184/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 11; Issue 10; Pages: 1184 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs11101184 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5044975389 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4995-9039 |
| authorships[0].author.display_name | Hyun-Ho Choi |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4575257, https://openalex.org/I93906172 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics and Computer Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea |
| authorships[0].institutions[0].id | https://openalex.org/I93906172 |
| authorships[0].institutions[0].ror | https://ror.org/018pdh902 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I93906172 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Anyang University |
| authorships[0].institutions[1].id | https://openalex.org/I4575257 |
| authorships[0].institutions[1].ror | https://ror.org/046865y68 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4575257 |
| authorships[0].institutions[1].country_code | KR |
| authorships[0].institutions[1].display_name | Hanyang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hyunho Choi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics and Computer Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea |
| authorships[1].author.id | https://openalex.org/A5018642097 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3759-3116 |
| authorships[1].author.display_name | Jechang Jeong |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4575257, https://openalex.org/I93906172 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Computer Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea |
| authorships[1].institutions[0].id | https://openalex.org/I93906172 |
| authorships[1].institutions[0].ror | https://ror.org/018pdh902 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I93906172 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Anyang University |
| authorships[1].institutions[1].id | https://openalex.org/I4575257 |
| authorships[1].institutions[1].ror | https://ror.org/046865y68 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I4575257 |
| authorships[1].institutions[1].country_code | KR |
| authorships[1].institutions[1].display_name | Hanyang University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jechang Jeong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Electronics and Computer Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-05-29T00:00:00 |
| display_name | Speckle Noise Reduction Technique for SAR Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2065648684, https://openalex.org/W2113052720, https://openalex.org/W2799624451, https://openalex.org/W2009383287, https://openalex.org/W2042914788, https://openalex.org/W2182190754, https://openalex.org/W2121688719, https://openalex.org/W2162457349, https://openalex.org/W1976248695, https://openalex.org/W1969304600 |
| cited_by_count | 116 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 20 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 20 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 20 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 24 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 10 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs11101184 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs11101184 |
| primary_location.id | doi:10.3390/rs11101184 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/11/10/1184/pdf?version=1558169378 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs11101184 |
| publication_date | 2019-05-18 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2002122316, https://openalex.org/W2762758624, https://openalex.org/W2801272453, https://openalex.org/W2806155925, https://openalex.org/W2788008270, https://openalex.org/W2897086142, https://openalex.org/W2897194080, https://openalex.org/W2791357935, https://openalex.org/W6751977794, https://openalex.org/W2519079409, https://openalex.org/W2133954466, https://openalex.org/W2168896212, https://openalex.org/W6675077989, https://openalex.org/W6674723063, https://openalex.org/W2136396015, https://openalex.org/W2962943467, https://openalex.org/W2599749138, https://openalex.org/W2150134853, https://openalex.org/W3111916487, https://openalex.org/W2144851790, https://openalex.org/W1914979257, https://openalex.org/W1983092477, https://openalex.org/W2626060251, https://openalex.org/W2004376198, https://openalex.org/W2893106327, https://openalex.org/W1976272929, https://openalex.org/W2028555274, https://openalex.org/W2056346283, https://openalex.org/W2018395267, https://openalex.org/W2067675327, https://openalex.org/W2797488090, https://openalex.org/W2146842127, https://openalex.org/W2079724595, https://openalex.org/W2125527601, https://openalex.org/W2772182754, https://openalex.org/W2547859684, https://openalex.org/W2167758771, https://openalex.org/W2587243623, https://openalex.org/W2130094715, https://openalex.org/W2807089335, https://openalex.org/W6751230449, https://openalex.org/W6639929631, https://openalex.org/W2327020022, https://openalex.org/W2907355865, https://openalex.org/W2125188192, https://openalex.org/W2115057159, https://openalex.org/W2100925004, https://openalex.org/W2143901157, https://openalex.org/W1980161736, https://openalex.org/W2117294245, https://openalex.org/W2104763670, https://openalex.org/W2476975422, https://openalex.org/W4255455561, https://openalex.org/W2749075781, https://openalex.org/W1982348168, https://openalex.org/W2805486479, https://openalex.org/W2143425433, https://openalex.org/W2164647001, https://openalex.org/W3098435832, https://openalex.org/W3103964896, https://openalex.org/W2803364840, https://openalex.org/W2131168375, https://openalex.org/W3102144978, https://openalex.org/W1919263765, https://openalex.org/W2141957843, https://openalex.org/W2803870360 |
| referenced_works_count | 66 |
| abstract_inverted_index.A | 113 |
| abstract_inverted_index.a | 50, 96 |
| abstract_inverted_index.To | 132 |
| abstract_inverted_index.at | 8 |
| abstract_inverted_index.in | 24, 105, 186 |
| abstract_inverted_index.is | 89, 99, 116 |
| abstract_inverted_index.of | 12, 33, 40, 81 |
| abstract_inverted_index.or | 16 |
| abstract_inverted_index.to | 91, 101, 118, 188 |
| abstract_inverted_index.DWT | 115 |
| abstract_inverted_index.GF. | 168 |
| abstract_inverted_index.SAR | 20, 41, 93, 176 |
| abstract_inverted_index.The | 169, 178 |
| abstract_inverted_index.aim | 80 |
| abstract_inverted_index.and | 74, 95, 127, 137, 142, 174, 201 |
| abstract_inverted_index.art | 190 |
| abstract_inverted_index.has | 30 |
| abstract_inverted_index.low | 203 |
| abstract_inverted_index.map | 5 |
| abstract_inverted_index.one | 125 |
| abstract_inverted_index.six | 128 |
| abstract_inverted_index.the | 13, 31, 37, 57, 79, 86, 92, 106, 120, 134, 147, 150, 155, 158, 167, 183, 199 |
| abstract_inverted_index.IGF; | 156 |
| abstract_inverted_index.SRAD | 87, 108, 122 |
| abstract_inverted_index.This | 47 |
| abstract_inverted_index.both | 172 |
| abstract_inverted_index.edge | 139 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.into | 110, 124 |
| abstract_inverted_index.low- | 159 |
| abstract_inverted_index.real | 175 |
| abstract_inverted_index.soft | 68, 148 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.used | 100, 117, 171 |
| abstract_inverted_index.with | 78 |
| abstract_inverted_index.(GF), | 77 |
| abstract_inverted_index.(SAR) | 3 |
| abstract_inverted_index.edges | 200 |
| abstract_inverted_index.image | 38, 109, 123, 162 |
| abstract_inverted_index.loss. | 46 |
| abstract_inverted_index.noise | 52, 104, 136, 165, 195 |
| abstract_inverted_index.radar | 2 |
| abstract_inverted_index.study | 48 |
| abstract_inverted_index.using | 56, 166 |
| abstract_inverted_index.which | 29, 43 |
| abstract_inverted_index.while | 55, 197 |
| abstract_inverted_index.(DWT), | 67 |
| abstract_inverted_index.(IGF), | 73 |
| abstract_inverted_index.(SRAD) | 62 |
| abstract_inverted_index.First, | 85 |
| abstract_inverted_index.causes | 44 |
| abstract_inverted_index.divide | 119 |
| abstract_inverted_index.employ | 146, 154 |
| abstract_inverted_index.filter | 72, 76, 88 |
| abstract_inverted_index.guided | 71, 75 |
| abstract_inverted_index.images | 4, 21, 145, 153 |
| abstract_inverted_index.noise, | 28, 35 |
| abstract_inverted_index.noise. | 84, 112 |
| abstract_inverted_index.remove | 133 |
| abstract_inverted_index.reveal | 181 |
| abstract_inverted_index.while, | 157 |
| abstract_inverted_index.Speckle | 27 |
| abstract_inverted_index.applied | 90 |
| abstract_inverted_index.convert | 102 |
| abstract_inverted_index.fields. | 26 |
| abstract_inverted_index.filter, | 63 |
| abstract_inverted_index.images, | 42, 94 |
| abstract_inverted_index.images. | 131, 177 |
| abstract_inverted_index.method, | 185 |
| abstract_inverted_index.obtains | 192 |
| abstract_inverted_index.quality | 39 |
| abstract_inverted_index.removes | 163 |
| abstract_inverted_index.results | 180 |
| abstract_inverted_index.speckle | 51, 58, 83, 194 |
| abstract_inverted_index.surface | 7 |
| abstract_inverted_index.various | 25 |
| abstract_inverted_index.wavelet | 65 |
| abstract_inverted_index.weather | 14 |
| abstract_inverted_index.additive | 111, 135, 164 |
| abstract_inverted_index.aperture | 1 |
| abstract_inverted_index.degrades | 36 |
| abstract_inverted_index.diagonal | 151 |
| abstract_inverted_index.discrete | 64 |
| abstract_inverted_index.improved | 70 |
| abstract_inverted_index.methods, | 191 |
| abstract_inverted_index.preserve | 138 |
| abstract_inverted_index.proposed | 184 |
| abstract_inverted_index.proposes | 49 |
| abstract_inverted_index.reducing | 59 |
| abstract_inverted_index.removal, | 196 |
| abstract_inverted_index.removing | 82 |
| abstract_inverted_index.standard | 173 |
| abstract_inverted_index.sub-band | 130, 144, 152, 161 |
| abstract_inverted_index.sunshine | 17 |
| abstract_inverted_index.vertical | 143 |
| abstract_inverted_index.Earth’s | 6 |
| abstract_inverted_index.Synthetic | 0 |
| abstract_inverted_index.algorithm | 54 |
| abstract_inverted_index.diffusion | 61 |
| abstract_inverted_index.excellent | 193 |
| abstract_inverted_index.frequency | 160 |
| abstract_inverted_index.reduction | 53 |
| abstract_inverted_index.resulting | 107, 121 |
| abstract_inverted_index.transform | 66, 98 |
| abstract_inverted_index.two-level | 114 |
| abstract_inverted_index.Therefore, | 19 |
| abstract_inverted_index.comparison | 187 |
| abstract_inverted_index.conditions | 15 |
| abstract_inverted_index.horizontal | 141 |
| abstract_inverted_index.phenomena. | 18 |
| abstract_inverted_index.preserving | 198 |
| abstract_inverted_index.regardless | 11 |
| abstract_inverted_index.threshold, | 69 |
| abstract_inverted_index.threshold; | 149 |
| abstract_inverted_index.anisotropic | 60 |
| abstract_inverted_index.complexity. | 205 |
| abstract_inverted_index.experiments | 170 |
| abstract_inverted_index.information | 45 |
| abstract_inverted_index.logarithmic | 97 |
| abstract_inverted_index.maintaining | 202 |
| abstract_inverted_index.resolution, | 10 |
| abstract_inverted_index.applications | 23 |
| abstract_inverted_index.experimental | 179 |
| abstract_inverted_index.information, | 140 |
| abstract_inverted_index.state-of-the | 189 |
| abstract_inverted_index.computational | 204 |
| abstract_inverted_index.low-frequency | 126 |
| abstract_inverted_index.characteristic | 32 |
| abstract_inverted_index.high-frequency | 129 |
| abstract_inverted_index.multiplicative | 34, 103 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5018642097 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I4575257, https://openalex.org/I93906172 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[1].score | 0.4399999976158142 |
| sustainable_development_goals[1].display_name | Climate action |
| citation_normalized_percentile.value | 0.96801811 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |