SpecTr: Fast Speculative Decoding via Optimal Transport Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.15141
Autoregressive sampling from large language models has led to state-of-the-art results in several natural language tasks. However, autoregressive sampling generates tokens one at a time making it slow, and even prohibitive in certain tasks. One way to speed up sampling is $\textit{speculative decoding}$: use a small model to sample a $\textit{draft}$ (block or sequence of tokens), and then score all tokens in the draft by the large language model in parallel. A subset of the tokens in the draft are accepted (and the rest rejected) based on a statistical method to guarantee that the final output follows the distribution of the large model. In this work, we provide a principled understanding of speculative decoding through the lens of optimal transport (OT) with $\textit{membership cost}$. This framework can be viewed as an extension of the well-known $\textit{maximal-coupling}$ problem. This new formulation enables us to generalize the speculative decoding method to allow for a set of $k$ candidates at the token-level, which leads to an improved optimal membership cost. We show that the optimal draft selection algorithm (transport plan) can be computed via linear programming, whose best-known runtime is exponential in $k$. We then propose a valid draft selection algorithm whose acceptance probability is $(1-1/e)$-optimal multiplicatively. Moreover, it can be computed in time almost linear with size of domain of a single token. Using this $new draft selection$ algorithm, we develop a new autoregressive sampling algorithm called $\textit{SpecTr}$, which provides speedup in decoding while ensuring that there is no quality degradation in the decoded output. We experimentally demonstrate that for state-of-the-art large language models, the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.15141
- https://arxiv.org/pdf/2310.15141
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387929784
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387929784Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.15141Digital Object Identifier
- Title
-
SpecTr: Fast Speculative Decoding via Optimal TransportWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-23Full publication date if available
- Authors
-
Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, Felix YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.15141Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.15141Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.15141Direct OA link when available
- Concepts
-
Decoding methods, Computer science, Security token, Speedup, Selection (genetic algorithm), Autoregressive model, Algorithm, Sampling (signal processing), Sequence (biology), Set (abstract data type), Theoretical computer science, Mathematics, Parallel computing, Filter (signal processing), Artificial intelligence, Statistics, Biology, Genetics, Computer security, Computer vision, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387929784 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.15141 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.15141 |
| ids.openalex | https://openalex.org/W4387929784 |
| fwci | |
| type | preprint |
| title | SpecTr: Fast Speculative Decoding via Optimal Transport |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9851999878883362 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C57273362 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7792630791664124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[0].display_name | Decoding methods |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7212610244750977 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C48145219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7065885663032532 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[2].display_name | Security token |
| concepts[3].id | https://openalex.org/C68339613 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6031196713447571 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[3].display_name | Speedup |
| concepts[4].id | https://openalex.org/C81917197 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5328954458236694 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[4].display_name | Selection (genetic algorithm) |
| concepts[5].id | https://openalex.org/C159877910 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5213567018508911 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[5].display_name | Autoregressive model |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.48636892437934875 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C140779682 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45635986328125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[7].display_name | Sampling (signal processing) |
| concepts[8].id | https://openalex.org/C2778112365 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4345855116844177 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[8].display_name | Sequence (biology) |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41918933391571045 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3204527795314789 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.18439587950706482 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C173608175 |
| concepts[12].level | 1 |
| concepts[12].score | 0.17543363571166992 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[12].display_name | Parallel computing |
| concepts[13].id | https://openalex.org/C106131492 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16592401266098022 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[13].display_name | Filter (signal processing) |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.14737293124198914 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.10320276021957397 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C54355233 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[17].display_name | Genetics |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/decoding-methods |
| keywords[0].score | 0.7792630791664124 |
| keywords[0].display_name | Decoding methods |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7212610244750977 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/security-token |
| keywords[2].score | 0.7065885663032532 |
| keywords[2].display_name | Security token |
| keywords[3].id | https://openalex.org/keywords/speedup |
| keywords[3].score | 0.6031196713447571 |
| keywords[3].display_name | Speedup |
| keywords[4].id | https://openalex.org/keywords/selection |
| keywords[4].score | 0.5328954458236694 |
| keywords[4].display_name | Selection (genetic algorithm) |
| keywords[5].id | https://openalex.org/keywords/autoregressive-model |
| keywords[5].score | 0.5213567018508911 |
| keywords[5].display_name | Autoregressive model |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.48636892437934875 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/sampling |
| keywords[7].score | 0.45635986328125 |
| keywords[7].display_name | Sampling (signal processing) |
| keywords[8].id | https://openalex.org/keywords/sequence |
| keywords[8].score | 0.4345855116844177 |
| keywords[8].display_name | Sequence (biology) |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.41918933391571045 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3204527795314789 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.18439587950706482 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/parallel-computing |
| keywords[12].score | 0.17543363571166992 |
| keywords[12].display_name | Parallel computing |
| keywords[13].id | https://openalex.org/keywords/filter |
| keywords[13].score | 0.16592401266098022 |
| keywords[13].display_name | Filter (signal processing) |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.14737293124198914 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.10320276021957397 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.15141 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.15141 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.15141 |
| locations[1].id | doi:10.48550/arxiv.2310.15141 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.15141 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001128596 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ziteng Sun |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sun, Ziteng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103890688 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ananda Theertha Suresh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suresh, Ananda Theertha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5075278288 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jae Hun Ro |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ro, Jae Hun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5008645615 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1998-5271 |
| authorships[3].author.display_name | Ahmad Beirami |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Beirami, Ahmad |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008620289 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4382-9460 |
| authorships[4].author.display_name | Himanshu Jain |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jain, Himanshu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5111045439 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Felix Yu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yu, Felix |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.15141 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SpecTr: Fast Speculative Decoding via Optimal Transport |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W2058965144, https://openalex.org/W2164382479, https://openalex.org/W2146343568, https://openalex.org/W98480971, https://openalex.org/W2150291671, https://openalex.org/W2013643406, https://openalex.org/W2027972911, https://openalex.org/W2157978810, https://openalex.org/W4384264648, https://openalex.org/W4389471172 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.15141 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.15141 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.15141 |
| primary_location.id | pmh:oai:arXiv.org:2310.15141 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.15141 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.15141 |
| publication_date | 2023-10-23 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 71 |
| abstract_inverted_index.a | 23, 44, 49, 87, 108, 151, 193, 218, 229, 266, 272 |
| abstract_inverted_index.In | 103 |
| abstract_inverted_index.We | 167, 190, 253 |
| abstract_inverted_index.an | 130, 162 |
| abstract_inverted_index.as | 129 |
| abstract_inverted_index.at | 22, 156 |
| abstract_inverted_index.be | 127, 178, 207 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 11, 31, 61, 69, 76, 188, 209, 239, 249 |
| abstract_inverted_index.is | 40, 186, 201, 245 |
| abstract_inverted_index.it | 26, 205 |
| abstract_inverted_index.no | 246 |
| abstract_inverted_index.of | 54, 73, 99, 111, 117, 132, 153, 215, 217, 270 |
| abstract_inverted_index.on | 86, 279 |
| abstract_inverted_index.or | 52 |
| abstract_inverted_index.to | 8, 36, 47, 90, 142, 148, 161 |
| abstract_inverted_index.up | 38 |
| abstract_inverted_index.us | 141 |
| abstract_inverted_index.we | 106, 227 |
| abstract_inverted_index.$k$ | 154 |
| abstract_inverted_index.One | 34 |
| abstract_inverted_index.all | 59 |
| abstract_inverted_index.and | 28, 56 |
| abstract_inverted_index.are | 79 |
| abstract_inverted_index.can | 126, 177, 206 |
| abstract_inverted_index.for | 150, 257 |
| abstract_inverted_index.has | 6 |
| abstract_inverted_index.led | 7 |
| abstract_inverted_index.new | 138, 230 |
| abstract_inverted_index.one | 21 |
| abstract_inverted_index.set | 152 |
| abstract_inverted_index.the | 62, 65, 74, 77, 82, 93, 97, 100, 115, 133, 144, 157, 170, 250, 262 |
| abstract_inverted_index.use | 43 |
| abstract_inverted_index.via | 180 |
| abstract_inverted_index.way | 35 |
| abstract_inverted_index.$k$. | 189 |
| abstract_inverted_index.$new | 223 |
| abstract_inverted_index.(OT) | 120 |
| abstract_inverted_index.(and | 81 |
| abstract_inverted_index.This | 124, 137 |
| abstract_inverted_index.even | 29 |
| abstract_inverted_index.from | 2 |
| abstract_inverted_index.lens | 116 |
| abstract_inverted_index.over | 276 |
| abstract_inverted_index.rest | 83 |
| abstract_inverted_index.show | 168 |
| abstract_inverted_index.size | 214 |
| abstract_inverted_index.that | 92, 169, 243, 256 |
| abstract_inverted_index.then | 57, 191 |
| abstract_inverted_index.this | 104, 222 |
| abstract_inverted_index.time | 24, 210 |
| abstract_inverted_index.wall | 267 |
| abstract_inverted_index.with | 121, 213 |
| abstract_inverted_index.1.37X | 274 |
| abstract_inverted_index.Using | 221 |
| abstract_inverted_index.allow | 149 |
| abstract_inverted_index.based | 85 |
| abstract_inverted_index.clock | 268 |
| abstract_inverted_index.cost. | 166 |
| abstract_inverted_index.draft | 63, 78, 172, 195, 224 |
| abstract_inverted_index.final | 94 |
| abstract_inverted_index.large | 3, 66, 101, 259 |
| abstract_inverted_index.leads | 160 |
| abstract_inverted_index.model | 46, 68 |
| abstract_inverted_index.plan) | 176 |
| abstract_inverted_index.score | 58 |
| abstract_inverted_index.slow, | 27 |
| abstract_inverted_index.small | 45 |
| abstract_inverted_index.speed | 37 |
| abstract_inverted_index.there | 244 |
| abstract_inverted_index.valid | 194 |
| abstract_inverted_index.which | 159, 236 |
| abstract_inverted_index.while | 241 |
| abstract_inverted_index.whose | 183, 198 |
| abstract_inverted_index.work, | 105 |
| abstract_inverted_index.(block | 51 |
| abstract_inverted_index.2.13X, | 271 |
| abstract_inverted_index.almost | 211 |
| abstract_inverted_index.called | 234 |
| abstract_inverted_index.domain | 216 |
| abstract_inverted_index.linear | 181, 212 |
| abstract_inverted_index.making | 25 |
| abstract_inverted_index.method | 89, 147 |
| abstract_inverted_index.model. | 102 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.output | 95 |
| abstract_inverted_index.sample | 48 |
| abstract_inverted_index.single | 219 |
| abstract_inverted_index.subset | 72 |
| abstract_inverted_index.tasks. | 15, 33 |
| abstract_inverted_index.token. | 220 |
| abstract_inverted_index.tokens | 20, 60, 75 |
| abstract_inverted_index.viewed | 128 |
| abstract_inverted_index.certain | 32 |
| abstract_inverted_index.cost}$. | 123 |
| abstract_inverted_index.decoded | 251 |
| abstract_inverted_index.develop | 228 |
| abstract_inverted_index.enables | 140 |
| abstract_inverted_index.follows | 96 |
| abstract_inverted_index.further | 273 |
| abstract_inverted_index.models, | 261 |
| abstract_inverted_index.natural | 13 |
| abstract_inverted_index.optimal | 118, 164, 171 |
| abstract_inverted_index.output. | 252 |
| abstract_inverted_index.propose | 192 |
| abstract_inverted_index.provide | 107 |
| abstract_inverted_index.quality | 247 |
| abstract_inverted_index.results | 10 |
| abstract_inverted_index.runtime | 185 |
| abstract_inverted_index.several | 12 |
| abstract_inverted_index.speedup | 238, 269, 275 |
| abstract_inverted_index.through | 114 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.accepted | 80 |
| abstract_inverted_index.achieves | 265 |
| abstract_inverted_index.approach | 264 |
| abstract_inverted_index.computed | 179, 208 |
| abstract_inverted_index.decoding | 113, 146, 240, 278 |
| abstract_inverted_index.ensuring | 242 |
| abstract_inverted_index.improved | 163 |
| abstract_inverted_index.language | 4, 14, 67, 260 |
| abstract_inverted_index.problem. | 136 |
| abstract_inverted_index.proposed | 263 |
| abstract_inverted_index.provides | 237 |
| abstract_inverted_index.sampling | 1, 18, 39, 232 |
| abstract_inverted_index.sequence | 53 |
| abstract_inverted_index.standard | 280 |
| abstract_inverted_index.tokens), | 55 |
| abstract_inverted_index.Moreover, | 204 |
| abstract_inverted_index.algorithm | 174, 197, 233 |
| abstract_inverted_index.extension | 131 |
| abstract_inverted_index.framework | 125 |
| abstract_inverted_index.generates | 19 |
| abstract_inverted_index.guarantee | 91 |
| abstract_inverted_index.parallel. | 70 |
| abstract_inverted_index.rejected) | 84 |
| abstract_inverted_index.selection | 173, 196 |
| abstract_inverted_index.transport | 119 |
| abstract_inverted_index.(transport | 175 |
| abstract_inverted_index.acceptance | 199 |
| abstract_inverted_index.algorithm, | 226 |
| abstract_inverted_index.best-known | 184 |
| abstract_inverted_index.candidates | 155 |
| abstract_inverted_index.generalize | 143 |
| abstract_inverted_index.membership | 165 |
| abstract_inverted_index.principled | 109 |
| abstract_inverted_index.selection$ | 225 |
| abstract_inverted_index.well-known | 134 |
| abstract_inverted_index.benchmarks. | 281 |
| abstract_inverted_index.decoding}$: | 42 |
| abstract_inverted_index.degradation | 248 |
| abstract_inverted_index.demonstrate | 255 |
| abstract_inverted_index.exponential | 187 |
| abstract_inverted_index.formulation | 139 |
| abstract_inverted_index.probability | 200 |
| abstract_inverted_index.prohibitive | 30 |
| abstract_inverted_index.speculative | 112, 145, 277 |
| abstract_inverted_index.statistical | 88 |
| abstract_inverted_index.distribution | 98 |
| abstract_inverted_index.programming, | 182 |
| abstract_inverted_index.token-level, | 158 |
| abstract_inverted_index.understanding | 110 |
| abstract_inverted_index.Autoregressive | 0 |
| abstract_inverted_index.autoregressive | 17, 231 |
| abstract_inverted_index.experimentally | 254 |
| abstract_inverted_index.$\textit{draft}$ | 50 |
| abstract_inverted_index.state-of-the-art | 9, 258 |
| abstract_inverted_index.$(1-1/e)$-optimal | 202 |
| abstract_inverted_index.multiplicatively. | 203 |
| abstract_inverted_index.$\textit{SpecTr}$, | 235 |
| abstract_inverted_index.$\textit{membership | 122 |
| abstract_inverted_index.$\textit{speculative | 41 |
| abstract_inverted_index.$\textit{maximal-coupling}$ | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |