Spectral Constrained Generative Adversarial Network for Hyperspectral Compression Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2025.3599996
Lossy compression exhibits remarkable capabilities in handling large volumes of data. However, information loss can affect spectral characteristics and spatial information to various degrees during hyperspectral compression. Therefore, it is essential to restrict the range of spectral changes, as each spectral curve corresponds to a distinct semantic context. In this article, we propose a spectral-constrained generative adversarial network (SCGAN) for hyperspectral compression. Specifically, SCGAN integrates compression and classification tasks within a unified framework. During generative adversarial learning, SCGAN uses a classification map to guide the generation of global spectral information. To deal with different hyperspectral images (HSIs) in one model, a three-stage training strategy is leveraged. Experiments conducted on three public HSI datasets illustrate that the proposed SCGAN effectively narrows the semantic gap. For instance, the average overall classification accuracy of SCGAN on Pavia University is above 0.9, which is the closest to the classification accuracy achieved with the original HSIs, even at a low bitrate of 0.05 bits per pixel per band.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2025.3599996
- OA Status
- gold
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413319044
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413319044Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2025.3599996Digital Object Identifier
- Title
-
Spectral Constrained Generative Adversarial Network for Hyperspectral CompressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yuanyuan Guo, Weizhong Li, Qi Peng, Li-fen TuList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2025.3599996Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2025.3599996Direct OA link when available
- Concepts
-
Hyperspectral imaging, Adversarial system, Computer science, Generative grammar, Data compression, Compression (physics), Generative adversarial network, Artificial intelligence, Deep learning, Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413319044 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2025.3599996 |
| ids.doi | https://doi.org/10.1109/jstars.2025.3599996 |
| ids.openalex | https://openalex.org/W4413319044 |
| fwci | 0.0 |
| type | article |
| title | Spectral Constrained Generative Adversarial Network for Hyperspectral Compression |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | 23386 |
| biblio.first_page | 23372 |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.991100013256073 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9718000292778015 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9599000215530396 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8126335144042969 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7016260027885437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6471227407455444 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5356124639511108 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C78548338 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5201883316040039 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[4].display_name | Data compression |
| concepts[5].id | https://openalex.org/C180016635 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5012891292572021 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2712821 |
| concepts[5].display_name | Compression (physics) |
| concepts[6].id | https://openalex.org/C2988773926 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47331178188323975 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[6].display_name | Generative adversarial network |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.43689489364624023 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.13799750804901123 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C192562407 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[9].display_name | Materials science |
| concepts[10].id | https://openalex.org/C159985019 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[10].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.8126335144042969 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.7016260027885437 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6471227407455444 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.5356124639511108 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/data-compression |
| keywords[4].score | 0.5201883316040039 |
| keywords[4].display_name | Data compression |
| keywords[5].id | https://openalex.org/keywords/compression |
| keywords[5].score | 0.5012891292572021 |
| keywords[5].display_name | Compression (physics) |
| keywords[6].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[6].score | 0.47331178188323975 |
| keywords[6].display_name | Generative adversarial network |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.43689489364624023 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.13799750804901123 |
| keywords[8].display_name | Deep learning |
| language | en |
| locations[0].id | doi:10.1109/jstars.2025.3599996 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2025.3599996 |
| locations[1].id | pmh:oai:doaj.org/article:02e2bc0454fd477ea10b28f3cd465ffa |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 18, Pp 23372-23386 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/02e2bc0454fd477ea10b28f3cd465ffa |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102782499 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0223-9037 |
| authorships[0].author.display_name | Yuanyuan Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210154338 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210154338 |
| authorships[0].institutions[0].ror | https://ror.org/05amnwk22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210154338 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hubei Engineering University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanyuan Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[1].author.id | https://openalex.org/A5101583301 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9003-7733 |
| authorships[1].author.display_name | Weizhong Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210154338 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210154338 |
| authorships[1].institutions[0].ror | https://ror.org/05amnwk22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210154338 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hubei Engineering University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weizhong Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[2].author.id | https://openalex.org/A5005043494 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5693-0480 |
| authorships[2].author.display_name | Qi Peng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210154338 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210154338 |
| authorships[2].institutions[0].ror | https://ror.org/05amnwk22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210154338 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hubei Engineering University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qi Peng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[3].author.id | https://openalex.org/A5063492020 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5774-8138 |
| authorships[3].author.display_name | Li-fen Tu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210154338 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210154338 |
| authorships[3].institutions[0].ror | https://ror.org/05amnwk22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210154338 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hubei Engineering University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lifen Tu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2025.3599996 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spectral Constrained Generative Adversarial Network for Hyperspectral Compression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.991100013256073 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2072166414, https://openalex.org/W2502115930, https://openalex.org/W3209970181, https://openalex.org/W2888032422, https://openalex.org/W2996316059, https://openalex.org/W4410783345, https://openalex.org/W4377980832, https://openalex.org/W2897769091, https://openalex.org/W2845413374, https://openalex.org/W3005996785 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2025.3599996 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3599996 |
| primary_location.id | doi:10.1109/jstars.2025.3599996 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3599996 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4285156110, https://openalex.org/W2991616716, https://openalex.org/W4396764612, https://openalex.org/W4376464564, https://openalex.org/W2946484452, https://openalex.org/W4387986484, https://openalex.org/W2002652706, https://openalex.org/W2142458747, https://openalex.org/W4387802441, https://openalex.org/W2531452236, https://openalex.org/W2137573493, https://openalex.org/W2533971697, https://openalex.org/W2973230510, https://openalex.org/W2153922636, https://openalex.org/W2158548804, https://openalex.org/W2133764833, https://openalex.org/W2005083749, https://openalex.org/W2963149687, https://openalex.org/W4285504878, https://openalex.org/W4393253042, https://openalex.org/W3034469748, https://openalex.org/W4362496227, https://openalex.org/W4290755749, https://openalex.org/W3100975431, https://openalex.org/W4402261413, https://openalex.org/W3150201565, https://openalex.org/W4313306370, https://openalex.org/W1915485278, https://openalex.org/W2614166664, https://openalex.org/W2963505747, https://openalex.org/W2911590151, https://openalex.org/W3194113272, https://openalex.org/W3155072588, https://openalex.org/W4285124635, https://openalex.org/W4385976136, https://openalex.org/W4360584542, https://openalex.org/W4407737763, https://openalex.org/W2981613960, https://openalex.org/W4396909864, https://openalex.org/W2546645752, https://openalex.org/W4312565770, https://openalex.org/W4285207472, https://openalex.org/W2887644723, https://openalex.org/W4402261644, https://openalex.org/W2992919850, https://openalex.org/W4283260867, https://openalex.org/W4307091817, https://openalex.org/W4396941284, https://openalex.org/W4402509796, https://openalex.org/W2558098092, https://openalex.org/W2962770389, https://openalex.org/W3025440211, https://openalex.org/W2152061763, https://openalex.org/W3102189958, https://openalex.org/W4375928796, https://openalex.org/W1580389772, https://openalex.org/W3145049705, https://openalex.org/W4323022369, https://openalex.org/W2997454254, https://openalex.org/W2113172355 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 44, 53, 70, 79, 100, 153 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.To | 90 |
| abstract_inverted_index.as | 38 |
| abstract_inverted_index.at | 152 |
| abstract_inverted_index.in | 5, 97 |
| abstract_inverted_index.is | 29, 104, 135, 139 |
| abstract_inverted_index.it | 28 |
| abstract_inverted_index.of | 9, 35, 86, 130, 156 |
| abstract_inverted_index.on | 108, 132 |
| abstract_inverted_index.to | 21, 31, 43, 82, 142 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.For | 123 |
| abstract_inverted_index.HSI | 111 |
| abstract_inverted_index.and | 18, 66 |
| abstract_inverted_index.can | 14 |
| abstract_inverted_index.for | 59 |
| abstract_inverted_index.low | 154 |
| abstract_inverted_index.map | 81 |
| abstract_inverted_index.one | 98 |
| abstract_inverted_index.per | 159, 161 |
| abstract_inverted_index.the | 33, 84, 115, 120, 125, 140, 143, 148 |
| abstract_inverted_index.0.05 | 157 |
| abstract_inverted_index.0.9, | 137 |
| abstract_inverted_index.bits | 158 |
| abstract_inverted_index.deal | 91 |
| abstract_inverted_index.each | 39 |
| abstract_inverted_index.even | 151 |
| abstract_inverted_index.gap. | 122 |
| abstract_inverted_index.loss | 13 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.uses | 78 |
| abstract_inverted_index.with | 92, 147 |
| abstract_inverted_index.HSIs, | 150 |
| abstract_inverted_index.Lossy | 0 |
| abstract_inverted_index.Pavia | 133 |
| abstract_inverted_index.SCGAN | 63, 77, 117, 131 |
| abstract_inverted_index.above | 136 |
| abstract_inverted_index.band. | 162 |
| abstract_inverted_index.curve | 41 |
| abstract_inverted_index.data. | 10 |
| abstract_inverted_index.guide | 83 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.pixel | 160 |
| abstract_inverted_index.range | 34 |
| abstract_inverted_index.tasks | 68 |
| abstract_inverted_index.three | 109 |
| abstract_inverted_index.which | 138 |
| abstract_inverted_index.(HSIs) | 96 |
| abstract_inverted_index.During | 73 |
| abstract_inverted_index.affect | 15 |
| abstract_inverted_index.during | 24 |
| abstract_inverted_index.global | 87 |
| abstract_inverted_index.images | 95 |
| abstract_inverted_index.model, | 99 |
| abstract_inverted_index.public | 110 |
| abstract_inverted_index.within | 69 |
| abstract_inverted_index.(SCGAN) | 58 |
| abstract_inverted_index.average | 126 |
| abstract_inverted_index.bitrate | 155 |
| abstract_inverted_index.closest | 141 |
| abstract_inverted_index.degrees | 23 |
| abstract_inverted_index.narrows | 119 |
| abstract_inverted_index.network | 57 |
| abstract_inverted_index.overall | 127 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.spatial | 19 |
| abstract_inverted_index.unified | 71 |
| abstract_inverted_index.various | 22 |
| abstract_inverted_index.volumes | 8 |
| abstract_inverted_index.However, | 11 |
| abstract_inverted_index.accuracy | 129, 145 |
| abstract_inverted_index.achieved | 146 |
| abstract_inverted_index.article, | 50 |
| abstract_inverted_index.changes, | 37 |
| abstract_inverted_index.context. | 47 |
| abstract_inverted_index.datasets | 112 |
| abstract_inverted_index.distinct | 45 |
| abstract_inverted_index.exhibits | 2 |
| abstract_inverted_index.handling | 6 |
| abstract_inverted_index.original | 149 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.restrict | 32 |
| abstract_inverted_index.semantic | 46, 121 |
| abstract_inverted_index.spectral | 16, 36, 40, 88 |
| abstract_inverted_index.strategy | 103 |
| abstract_inverted_index.training | 102 |
| abstract_inverted_index.conducted | 107 |
| abstract_inverted_index.different | 93 |
| abstract_inverted_index.essential | 30 |
| abstract_inverted_index.instance, | 124 |
| abstract_inverted_index.learning, | 76 |
| abstract_inverted_index.Therefore, | 27 |
| abstract_inverted_index.University | 134 |
| abstract_inverted_index.framework. | 72 |
| abstract_inverted_index.generation | 85 |
| abstract_inverted_index.generative | 55, 74 |
| abstract_inverted_index.illustrate | 113 |
| abstract_inverted_index.integrates | 64 |
| abstract_inverted_index.leveraged. | 105 |
| abstract_inverted_index.remarkable | 3 |
| abstract_inverted_index.Experiments | 106 |
| abstract_inverted_index.adversarial | 56, 75 |
| abstract_inverted_index.compression | 1, 65 |
| abstract_inverted_index.corresponds | 42 |
| abstract_inverted_index.effectively | 118 |
| abstract_inverted_index.information | 12, 20 |
| abstract_inverted_index.three-stage | 101 |
| abstract_inverted_index.capabilities | 4 |
| abstract_inverted_index.compression. | 26, 61 |
| abstract_inverted_index.information. | 89 |
| abstract_inverted_index.Specifically, | 62 |
| abstract_inverted_index.hyperspectral | 25, 60, 94 |
| abstract_inverted_index.classification | 67, 80, 128, 144 |
| abstract_inverted_index.characteristics | 17 |
| abstract_inverted_index.spectral-constrained | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.37259969 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |