SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019
This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MHS) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdf
- OA Status
- diamond
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2943877772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2943877772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019Digital Object Identifier
- Title
-
SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATIONWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-05-09Full publication date if available
- Authors
-
Davood Akbari, Mina Moradizadeh, Mohammad Ghasem AkbariList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdfDirect OA link when available
- Concepts
-
Hyperspectral imaging, Pattern recognition (psychology), Computer science, Artificial intelligence, Support vector machine, Perceptron, Artificial neural network, Segmentation, Multilayer perceptron, Spatial analysis, Algorithm, Remote sensing, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2943877772 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019 |
| ids.mag | 2943877772 |
| ids.openalex | https://openalex.org/W2943877772 |
| fwci | 0.0 |
| type | article |
| title | SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION |
| biblio.issue | |
| biblio.volume | XLII-2/W12 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T13890 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Remote Sensing and Land Use |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9775999784469604 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159078339 |
| concepts[0].level | 2 |
| concepts[0].score | 0.861807107925415 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[0].display_name | Hyperspectral imaging |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.703943133354187 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6662578582763672 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6460378766059875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C12267149 |
| concepts[4].level | 2 |
| concepts[4].score | 0.631628692150116 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[4].display_name | Support vector machine |
| concepts[5].id | https://openalex.org/C60908668 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6100263595581055 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[5].display_name | Perceptron |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6099780201911926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C89600930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5497730374336243 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[7].display_name | Segmentation |
| concepts[8].id | https://openalex.org/C179717631 |
| concepts[8].level | 3 |
| concepts[8].score | 0.44920480251312256 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2991667 |
| concepts[8].display_name | Multilayer perceptron |
| concepts[9].id | https://openalex.org/C159620131 |
| concepts[9].level | 2 |
| concepts[9].score | 0.429568886756897 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[9].display_name | Spatial analysis |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36194294691085815 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C62649853 |
| concepts[11].level | 1 |
| concepts[11].score | 0.18289050459861755 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[11].display_name | Remote sensing |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07264697551727295 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[0].score | 0.861807107925415 |
| keywords[0].display_name | Hyperspectral imaging |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.703943133354187 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6662578582763672 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6460378766059875 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/support-vector-machine |
| keywords[4].score | 0.631628692150116 |
| keywords[4].display_name | Support vector machine |
| keywords[5].id | https://openalex.org/keywords/perceptron |
| keywords[5].score | 0.6100263595581055 |
| keywords[5].display_name | Perceptron |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.6099780201911926 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/segmentation |
| keywords[7].score | 0.5497730374336243 |
| keywords[7].display_name | Segmentation |
| keywords[8].id | https://openalex.org/keywords/multilayer-perceptron |
| keywords[8].score | 0.44920480251312256 |
| keywords[8].display_name | Multilayer perceptron |
| keywords[9].id | https://openalex.org/keywords/spatial-analysis |
| keywords[9].score | 0.429568886756897 |
| keywords[9].display_name | Spatial analysis |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.36194294691085815 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/remote-sensing |
| keywords[11].score | 0.18289050459861755 |
| keywords[11].display_name | Remote sensing |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.07264697551727295 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlii-2-w12-1-2019 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019 |
| locations[1].id | pmh:oai:doaj.org/article:b9619b261be641299477f9b9f94590cf |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W12, Pp 1-5 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/b9619b261be641299477f9b9f94590cf |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5074612097 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8617-8093 |
| authorships[0].author.display_name | Davood Akbari |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I112450260 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Surveying and Geomatics Engineering, College of Engineering, University of Zabol, Zabol, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I112450260 |
| authorships[0].institutions[0].ror | https://ror.org/03d9mz263 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I112450260 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Zabol University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D. Akbari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Surveying and Geomatics Engineering, College of Engineering, University of Zabol, Zabol, Iran |
| authorships[1].author.id | https://openalex.org/A5091502151 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3163-5853 |
| authorships[1].author.display_name | Mina Moradizadeh |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I39268498 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geomatics, Faculty of Civil and Transportation Engineering, University of Isfahan, Isfahan, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I39268498 |
| authorships[1].institutions[0].ror | https://ror.org/05h9t7759 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I39268498 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | University of Isfahan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. Moradizadeh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Geomatics, Faculty of Civil and Transportation Engineering, University of Isfahan, Isfahan, Iran |
| authorships[2].author.id | https://openalex.org/A5040497110 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5064-8065 |
| authorships[2].author.display_name | Mohammad Ghasem Akbari |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97626857 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil Engineering, College of Engineering, University of Birjand, Birjand, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I97626857 |
| authorships[2].institutions[0].ror | https://ror.org/03g4hym73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97626857 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | University of Birjand |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | M. Akbari |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil Engineering, College of Engineering, University of Birjand, Birjand, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGERY USING NEURAL NETWORK ALGORITHM AND HIERARCHICAL SEGMENTATION |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2076543106, https://openalex.org/W2019891950, https://openalex.org/W2085842814, https://openalex.org/W2523437662, https://openalex.org/W4387048144, https://openalex.org/W2492135063, https://openalex.org/W2362514456, https://openalex.org/W2766585573, https://openalex.org/W4387490624, https://openalex.org/W4286643620 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlii-2-w12-1-2019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019 |
| primary_location.id | doi:10.5194/isprs-archives-xlii-2-w12-1-2019 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W12/1/2019/isprs-archives-XLII-2-W12-1-2019.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w12-1-2019 |
| publication_date | 2019-05-09 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1975435738, https://openalex.org/W2103079830, https://openalex.org/W2104269704, https://openalex.org/W2164330327, https://openalex.org/W2051135580, https://openalex.org/W2059089906, https://openalex.org/W2043665634, https://openalex.org/W7027716524, https://openalex.org/W2045671290, https://openalex.org/W1997091620, https://openalex.org/W2139514605, https://openalex.org/W6725148912, https://openalex.org/W2160662337, https://openalex.org/W2165771856, https://openalex.org/W1510526001, https://openalex.org/W2326674917 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 4 |
| abstract_inverted_index.DC | 89 |
| abstract_inverted_index.In | 64 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.by | 24, 77 |
| abstract_inverted_index.in | 53 |
| abstract_inverted_index.is | 22, 35, 51 |
| abstract_inverted_index.of | 9, 59, 96 |
| abstract_inverted_index.on | 13, 87 |
| abstract_inverted_index.to | 55, 100 |
| abstract_inverted_index.MHS | 49, 106 |
| abstract_inverted_index.MLP | 78, 102 |
| abstract_inverted_index.The | 19, 32 |
| abstract_inverted_index.and | 16, 79, 103 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.fed | 37 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.new | 5 |
| abstract_inverted_index.the | 39, 48, 57, 65, 68, 73, 94, 101, 104 |
| abstract_inverted_index.Mall | 90 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.both | 14 |
| abstract_inverted_index.data | 34 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.into | 38 |
| abstract_inverted_index.maps | 75 |
| abstract_inverted_index.(MHS) | 30 |
| abstract_inverted_index.(MLP) | 42 |
| abstract_inverted_index.(SVM) | 83 |
| abstract_inverted_index.Then, | 47 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.first | 36 |
| abstract_inverted_index.order | 54 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.Vector | 81 |
| abstract_inverted_index.neural | 43 |
| abstract_inverted_index.types. | 63 |
| abstract_inverted_index.Support | 80 |
| abstract_inverted_index.applied | 52 |
| abstract_inverted_index.images, | 11 |
| abstract_inverted_index.markers | 69 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.results | 86 |
| abstract_inverted_index.spatial | 17, 20 |
| abstract_inverted_index.Machines | 82 |
| abstract_inverted_index.accuracy | 58 |
| abstract_inverted_index.approach | 98 |
| abstract_inverted_index.compared | 99 |
| abstract_inverted_index.dataset, | 92 |
| abstract_inverted_index.enhanced | 26 |
| abstract_inverted_index.increase | 56 |
| abstract_inverted_index.obtained | 23, 76 |
| abstract_inverted_index.original | 105 |
| abstract_inverted_index.proposed | 66, 97 |
| abstract_inverted_index.spectral | 15 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.algorithm | 50 |
| abstract_inverted_index.approach, | 67 |
| abstract_inverted_index.describes | 3 |
| abstract_inverted_index.extracted | 71 |
| abstract_inverted_index.framework | 6 |
| abstract_inverted_index.Perceptron | 41 |
| abstract_inverted_index.Washington | 88 |
| abstract_inverted_index.algorithm. | 31, 46 |
| abstract_inverted_index.classified | 61 |
| abstract_inverted_index.land-cover | 62 |
| abstract_inverted_index.Multi-Layer | 40 |
| abstract_inverted_index.algorithms. | 107 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.information | 21 |
| abstract_inverted_index.superiority | 95 |
| abstract_inverted_index.Experimental | 85 |
| abstract_inverted_index.Hierarchical | 28 |
| abstract_inverted_index.Marker-based | 27 |
| abstract_inverted_index.Segmentation | 29 |
| abstract_inverted_index.classifiers. | 84 |
| abstract_inverted_index.information. | 18 |
| abstract_inverted_index.hyperspectral | 10, 33, 91 |
| abstract_inverted_index.classification | 8, 45, 74 |
| abstract_inverted_index.less-accurately | 60 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.04946297 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |