Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/2632-2153/ad8c10
Spectroscopy techniques such as x-ray absorption near edge structure (XANES) provide valuable insights into the atomic structures of materials, yet the inverse prediction of precise structures from spectroscopic data remains a formidable challenge. In this study, we introduce a framework that combines generative artificial intelligence models with XANES spectroscopy to predict three-dimensional atomic structures of disordered systems, using amorphous carbon ( a -C) as a model system. In this work, we introduce a new framework based on the diffusion model, a recent generative machine learning method, to predict 3D structures of disordered materials from a target property. For demonstration, we apply the model to identify the atomic structures of a -C as a representative material system from the target XANES spectra. We show that conditional generation guided by XANES spectra reproduces key features of the target structures. Furthermore, we show that our model can steer the generative process to tailor atomic arrangements for a specific XANES spectrum. Finally, our generative model exhibits a remarkable scale-agnostic property, thereby enabling generation of realistic, large-scale structures through learning from a small-scale dataset (i.e. with small unit cells). Our work represents a significant stride in bridging the gap between materials characterization and atomic structure determination; in addition, it can be leveraged for materials discovery in exploring various material properties as targeted.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/2632-2153/ad8c10
- OA Status
- gold
- Cited By
- 9
- References
- 81
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403822421
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403822421Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/2632-2153/ad8c10Digital Object Identifier
- Title
-
Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-28Full publication date if available
- Authors
-
Hyuna Kwon, Tim Hsu, Wenyu Sun, Wonseok Jeong, Fikret Aydin, James Chapman, Xiaohong Chen, Vincenzo Lordi, Matthew R. Carbone, Deyu Lu, Fei Zhou, Tuan Anh PhamList of authors in order
- Landing page
-
https://doi.org/10.1088/2632-2153/ad8c10Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/2632-2153/ad8c10Direct OA link when available
- Concepts
-
XANES, Spectroscopy, X-ray absorption spectroscopy, Atomic units, Materials science, Computer science, Absorption spectroscopy, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
81Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403822421 |
|---|---|
| doi | https://doi.org/10.1088/2632-2153/ad8c10 |
| ids.doi | https://doi.org/10.1088/2632-2153/ad8c10 |
| ids.openalex | https://openalex.org/W4403822421 |
| fwci | 1.52409758 |
| type | article |
| title | Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion models |
| awards[0].id | https://openalex.org/G6300923449 |
| awards[0].funder_id | https://openalex.org/F4320337480 |
| awards[0].display_name | |
| awards[0].funder_award_id | FWPPS-030 |
| awards[0].funder_display_name | Basic Energy Sciences |
| awards[1].id | https://openalex.org/G5443159500 |
| awards[1].funder_id | https://openalex.org/F4320338289 |
| awards[1].display_name | |
| awards[1].funder_award_id | DE-SC0012704 |
| awards[1].funder_display_name | Brookhaven National Laboratory |
| awards[2].id | https://openalex.org/G7880386453 |
| awards[2].funder_id | https://openalex.org/F4320338286 |
| awards[2].display_name | |
| awards[2].funder_award_id | 22-ERD-014 |
| awards[2].funder_display_name | Lawrence Livermore National Laboratory |
| biblio.issue | 4 |
| biblio.volume | 5 |
| biblio.last_page | 045037 |
| biblio.first_page | 045037 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12613 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | X-ray Diffraction in Crystallography |
| topics[2].id | https://openalex.org/T12039 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2508 |
| topics[2].subfield.display_name | Surfaces, Coatings and Films |
| topics[2].display_name | Electron and X-Ray Spectroscopy Techniques |
| funders[0].id | https://openalex.org/F4320309565 |
| funders[0].ror | https://ror.org/05qwgg493 |
| funders[0].display_name | Boston University |
| funders[1].id | https://openalex.org/F4320337480 |
| funders[1].ror | https://ror.org/05mg91w61 |
| funders[1].display_name | Basic Energy Sciences |
| funders[2].id | https://openalex.org/F4320338286 |
| funders[2].ror | https://ror.org/041nk4h53 |
| funders[2].display_name | Lawrence Livermore National Laboratory |
| funders[3].id | https://openalex.org/F4320338289 |
| funders[3].ror | https://ror.org/02ex6cf31 |
| funders[3].display_name | Brookhaven National Laboratory |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1962 |
| apc_paid.value | 1600 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1962 |
| concepts[0].id | https://openalex.org/C110715899 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8419320583343506 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3570341 |
| concepts[0].display_name | XANES |
| concepts[1].id | https://openalex.org/C32891209 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5070176124572754 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483666 |
| concepts[1].display_name | Spectroscopy |
| concepts[2].id | https://openalex.org/C62284982 |
| concepts[2].level | 3 |
| concepts[2].score | 0.46181049942970276 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q903103 |
| concepts[2].display_name | X-ray absorption spectroscopy |
| concepts[3].id | https://openalex.org/C66823137 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4505591094493866 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q757568 |
| concepts[3].display_name | Atomic units |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4200728237628937 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40385037660598755 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C119824511 |
| concepts[6].level | 2 |
| concepts[6].score | 0.2647807002067566 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q13553575 |
| concepts[6].display_name | Absorption spectroscopy |
| concepts[7].id | https://openalex.org/C121332964 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2058408558368683 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[7].display_name | Physics |
| concepts[8].id | https://openalex.org/C62520636 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[8].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/xanes |
| keywords[0].score | 0.8419320583343506 |
| keywords[0].display_name | XANES |
| keywords[1].id | https://openalex.org/keywords/spectroscopy |
| keywords[1].score | 0.5070176124572754 |
| keywords[1].display_name | Spectroscopy |
| keywords[2].id | https://openalex.org/keywords/x-ray-absorption-spectroscopy |
| keywords[2].score | 0.46181049942970276 |
| keywords[2].display_name | X-ray absorption spectroscopy |
| keywords[3].id | https://openalex.org/keywords/atomic-units |
| keywords[3].score | 0.4505591094493866 |
| keywords[3].display_name | Atomic units |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.4200728237628937 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.40385037660598755 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/absorption-spectroscopy |
| keywords[6].score | 0.2647807002067566 |
| keywords[6].display_name | Absorption spectroscopy |
| keywords[7].id | https://openalex.org/keywords/physics |
| keywords[7].score | 0.2058408558368683 |
| keywords[7].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1088/2632-2153/ad8c10 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200687 |
| locations[0].source.issn | 2632-2153 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2632-2153 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Machine Learning Science and Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Science and Technology |
| locations[0].landing_page_url | https://doi.org/10.1088/2632-2153/ad8c10 |
| locations[1].id | pmh:oai:doaj.org/article:734194c33216412ba1ef82b89ab68291 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Machine Learning: Science and Technology, Vol 5, Iss 4, p 045037 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/734194c33216412ba1ef82b89ab68291 |
| locations[2].id | pmh:oai:osti.gov:2475211 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/2475211 |
| locations[3].id | pmh:oai:osti.gov:2477566 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402487 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[3].source.host_organization | https://openalex.org/I139351228 |
| locations[3].source.host_organization_name | Office of Scientific and Technical Information |
| locations[3].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.osti.gov/biblio/2477566 |
| locations[4].id | pmh:oai:osti.gov:2479422 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306402487 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[4].source.host_organization | https://openalex.org/I139351228 |
| locations[4].source.host_organization_name | Office of Scientific and Technical Information |
| locations[4].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://www.osti.gov/biblio/2479422 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5001327313 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4828-8598 |
| authorships[0].author.display_name | Hyuna Kwon |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hyuna Kwon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005768223 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0274-4444 |
| authorships[1].author.display_name | Tim Hsu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tim Hsu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028727210 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3521-3327 |
| authorships[2].author.display_name | Wenyu Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenyu Sun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5061445666 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8894-1857 |
| authorships[3].author.display_name | Wonseok Jeong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wonseok Jeong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5078514315 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3237-8043 |
| authorships[4].author.display_name | Fikret Aydin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fikret Aydin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5013065381 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8451-0275 |
| authorships[5].author.display_name | James Chapman |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | James Chapman |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100373745 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9797-8384 |
| authorships[6].author.display_name | Xiaohong Chen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Xiao Chen |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5056344177 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2415-4656 |
| authorships[7].author.display_name | Vincenzo Lordi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Vincenzo Lordi |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5067892749 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5181-9513 |
| authorships[8].author.display_name | Matthew R. Carbone |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Matthew R Carbone |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5053233284 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4351-6085 |
| authorships[9].author.display_name | Deyu Lu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Deyu Lu |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5100610923 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9659-4648 |
| authorships[10].author.display_name | Fei Zhou |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Fei Zhou |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5006222293 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-0025-7263 |
| authorships[11].author.display_name | Tuan Anh Pham |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Tuan Anh Pham |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/2632-2153/ad8c10 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spectroscopy-guided discovery of three-dimensional structures of disordered materials with diffusion models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W3024396050, https://openalex.org/W3215874161, https://openalex.org/W4303199087, https://openalex.org/W2314055667, https://openalex.org/W4303199185, https://openalex.org/W2065818450, https://openalex.org/W2811197385, https://openalex.org/W2060772890, https://openalex.org/W4399134673 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1088/2632-2153/ad8c10 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200687 |
| best_oa_location.source.issn | 2632-2153 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2632-2153 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Machine Learning Science and Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Science and Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1088/2632-2153/ad8c10 |
| primary_location.id | doi:10.1088/2632-2153/ad8c10 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200687 |
| primary_location.source.issn | 2632-2153 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2632-2153 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Machine Learning Science and Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Science and Technology |
| primary_location.landing_page_url | https://doi.org/10.1088/2632-2153/ad8c10 |
| publication_date | 2024-10-28 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2053328406, https://openalex.org/W2065077785, https://openalex.org/W4323827670, https://openalex.org/W1987230612, https://openalex.org/W2332794823, https://openalex.org/W2205186463, https://openalex.org/W4281695360, https://openalex.org/W2907976907, https://openalex.org/W4200446095, https://openalex.org/W2979285519, https://openalex.org/W3118507387, https://openalex.org/W2997100726, https://openalex.org/W3016719477, https://openalex.org/W6679045638, https://openalex.org/W6779823529, https://openalex.org/W6786375611, https://openalex.org/W1505878979, https://openalex.org/W2013035813, https://openalex.org/W6810983538, https://openalex.org/W6838915749, https://openalex.org/W6843464061, https://openalex.org/W6810026998, https://openalex.org/W4387378779, https://openalex.org/W6803041894, https://openalex.org/W6854092224, https://openalex.org/W2569226784, https://openalex.org/W3008157819, https://openalex.org/W3044862054, https://openalex.org/W3170303198, https://openalex.org/W4308696465, https://openalex.org/W2974099550, https://openalex.org/W3087809773, https://openalex.org/W6745535286, https://openalex.org/W4319300672, https://openalex.org/W1976401428, https://openalex.org/W4224129445, https://openalex.org/W2799738644, https://openalex.org/W2092204065, https://openalex.org/W2566642125, https://openalex.org/W4385829411, https://openalex.org/W2957565081, https://openalex.org/W1621950790, https://openalex.org/W1975997599, https://openalex.org/W2029413789, https://openalex.org/W6760846229, https://openalex.org/W6844364769, https://openalex.org/W6766978945, https://openalex.org/W6760045743, https://openalex.org/W6780179280, https://openalex.org/W6783741718, https://openalex.org/W6854068074, https://openalex.org/W1972356485, https://openalex.org/W2120145199, https://openalex.org/W1982253049, https://openalex.org/W1981368803, https://openalex.org/W2087585288, https://openalex.org/W3117142540, https://openalex.org/W1995492062, https://openalex.org/W2093287704, https://openalex.org/W2047031565, https://openalex.org/W4395001384, https://openalex.org/W4221149941, https://openalex.org/W4298185360, https://openalex.org/W4287645102, https://openalex.org/W3004970274, https://openalex.org/W2963746531, https://openalex.org/W2129069237, https://openalex.org/W4281671036, https://openalex.org/W3036167779, https://openalex.org/W2923868908, https://openalex.org/W4288419263, https://openalex.org/W4295312788, https://openalex.org/W3036843665, https://openalex.org/W3104811682, https://openalex.org/W4298184813, https://openalex.org/W4382334321, https://openalex.org/W3105767367, https://openalex.org/W4380352196, https://openalex.org/W4226070784, https://openalex.org/W3110257065, https://openalex.org/W3207367439 |
| referenced_works_count | 81 |
| abstract_inverted_index.( | 61 |
| abstract_inverted_index.a | 31, 39, 62, 65, 73, 81, 95, 110, 113, 154, 163, 177, 188 |
| abstract_inverted_index.-C | 111 |
| abstract_inverted_index.3D | 89 |
| abstract_inverted_index.In | 34, 68 |
| abstract_inverted_index.We | 122 |
| abstract_inverted_index.as | 4, 64, 112, 216 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.by | 128 |
| abstract_inverted_index.in | 191, 202, 211 |
| abstract_inverted_index.it | 204 |
| abstract_inverted_index.of | 18, 24, 55, 91, 109, 134, 170 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.to | 50, 87, 104, 149 |
| abstract_inverted_index.we | 37, 71, 100, 139 |
| abstract_inverted_index.-C) | 63 |
| abstract_inverted_index.For | 98 |
| abstract_inverted_index.Our | 185 |
| abstract_inverted_index.and | 198 |
| abstract_inverted_index.can | 144, 205 |
| abstract_inverted_index.for | 153, 208 |
| abstract_inverted_index.gap | 194 |
| abstract_inverted_index.key | 132 |
| abstract_inverted_index.new | 74 |
| abstract_inverted_index.our | 142, 159 |
| abstract_inverted_index.the | 15, 21, 78, 102, 106, 118, 135, 146, 193 |
| abstract_inverted_index.yet | 20 |
| abstract_inverted_index.data | 29 |
| abstract_inverted_index.edge | 8 |
| abstract_inverted_index.from | 27, 94, 117, 176 |
| abstract_inverted_index.into | 14 |
| abstract_inverted_index.near | 7 |
| abstract_inverted_index.show | 123, 140 |
| abstract_inverted_index.such | 3 |
| abstract_inverted_index.that | 41, 124, 141 |
| abstract_inverted_index.this | 35, 69 |
| abstract_inverted_index.unit | 183 |
| abstract_inverted_index.with | 47, 181 |
| abstract_inverted_index.work | 186 |
| abstract_inverted_index.(i.e. | 180 |
| abstract_inverted_index.XANES | 48, 120, 129, 156 |
| abstract_inverted_index.apply | 101 |
| abstract_inverted_index.based | 76 |
| abstract_inverted_index.model | 66, 103, 143, 161 |
| abstract_inverted_index.small | 182 |
| abstract_inverted_index.steer | 145 |
| abstract_inverted_index.using | 58 |
| abstract_inverted_index.work, | 70 |
| abstract_inverted_index.x-ray | 5 |
| abstract_inverted_index.atomic | 16, 53, 107, 151, 199 |
| abstract_inverted_index.carbon | 60 |
| abstract_inverted_index.guided | 127 |
| abstract_inverted_index.model, | 80 |
| abstract_inverted_index.models | 46 |
| abstract_inverted_index.recent | 82 |
| abstract_inverted_index.stride | 190 |
| abstract_inverted_index.study, | 36 |
| abstract_inverted_index.system | 116 |
| abstract_inverted_index.tailor | 150 |
| abstract_inverted_index.target | 96, 119, 136 |
| abstract_inverted_index.(XANES) | 10 |
| abstract_inverted_index.between | 195 |
| abstract_inverted_index.cells). | 184 |
| abstract_inverted_index.dataset | 179 |
| abstract_inverted_index.inverse | 22 |
| abstract_inverted_index.machine | 84 |
| abstract_inverted_index.method, | 86 |
| abstract_inverted_index.precise | 25 |
| abstract_inverted_index.predict | 51, 88 |
| abstract_inverted_index.process | 148 |
| abstract_inverted_index.provide | 11 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.spectra | 130 |
| abstract_inverted_index.system. | 67 |
| abstract_inverted_index.thereby | 167 |
| abstract_inverted_index.through | 174 |
| abstract_inverted_index.various | 213 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 158 |
| abstract_inverted_index.bridging | 192 |
| abstract_inverted_index.combines | 42 |
| abstract_inverted_index.enabling | 168 |
| abstract_inverted_index.exhibits | 162 |
| abstract_inverted_index.features | 133 |
| abstract_inverted_index.identify | 105 |
| abstract_inverted_index.insights | 13 |
| abstract_inverted_index.learning | 85, 175 |
| abstract_inverted_index.material | 115, 214 |
| abstract_inverted_index.specific | 155 |
| abstract_inverted_index.spectra. | 121 |
| abstract_inverted_index.systems, | 57 |
| abstract_inverted_index.valuable | 12 |
| abstract_inverted_index.addition, | 203 |
| abstract_inverted_index.amorphous | 59 |
| abstract_inverted_index.diffusion | 79 |
| abstract_inverted_index.discovery | 210 |
| abstract_inverted_index.exploring | 212 |
| abstract_inverted_index.framework | 40, 75 |
| abstract_inverted_index.introduce | 38, 72 |
| abstract_inverted_index.leveraged | 207 |
| abstract_inverted_index.materials | 93, 196, 209 |
| abstract_inverted_index.property, | 166 |
| abstract_inverted_index.property. | 97 |
| abstract_inverted_index.spectrum. | 157 |
| abstract_inverted_index.structure | 9, 200 |
| abstract_inverted_index.targeted. | 217 |
| abstract_inverted_index.absorption | 6 |
| abstract_inverted_index.artificial | 44 |
| abstract_inverted_index.challenge. | 33 |
| abstract_inverted_index.disordered | 56, 92 |
| abstract_inverted_index.formidable | 32 |
| abstract_inverted_index.generation | 126, 169 |
| abstract_inverted_index.generative | 43, 83, 147, 160 |
| abstract_inverted_index.materials, | 19 |
| abstract_inverted_index.prediction | 23 |
| abstract_inverted_index.properties | 215 |
| abstract_inverted_index.realistic, | 171 |
| abstract_inverted_index.remarkable | 164 |
| abstract_inverted_index.represents | 187 |
| abstract_inverted_index.reproduces | 131 |
| abstract_inverted_index.structures | 17, 26, 54, 90, 108, 173 |
| abstract_inverted_index.techniques | 2 |
| abstract_inverted_index.conditional | 125 |
| abstract_inverted_index.large-scale | 172 |
| abstract_inverted_index.significant | 189 |
| abstract_inverted_index.small-scale | 178 |
| abstract_inverted_index.structures. | 137 |
| abstract_inverted_index.Furthermore, | 138 |
| abstract_inverted_index.Spectroscopy | 1 |
| abstract_inverted_index.arrangements | 152 |
| abstract_inverted_index.intelligence | 45 |
| abstract_inverted_index.spectroscopy | 49 |
| abstract_inverted_index.spectroscopic | 28 |
| abstract_inverted_index.demonstration, | 99 |
| abstract_inverted_index.determination; | 201 |
| abstract_inverted_index.representative | 114 |
| abstract_inverted_index.scale-agnostic | 165 |
| abstract_inverted_index.characterization | 197 |
| abstract_inverted_index.three-dimensional | 52 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile.value | 0.85683197 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |