Spline local basis methods for nonparametric density estimation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1214/23-ss142
[Abstract]: This work reviews the literature on spline local basis methods for non-parametric density estimation. Particular attention is paid to B-spline density estimators which have experienced recent advances in both theory and methodology. These estimators occupy a very interesting space in statistics, which lies aptly at the cross-section of numerous statistical frameworks. New insights, experiments, and analyses are presented to cast the various estimation concepts in a unified context, while parallels and contrasts are drawn to the more familiar contexts of kernel density estimation. Unlike kernel density estimation, the study of local basis estimation is not yet fully mature, and this work also aims to highlight the gaps in existing literature which merit further investigation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1214/23-ss142
- https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdf
- OA Status
- diamond
- Cited By
- 6
- References
- 121
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4362503397
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4362503397Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1214/23-ss142Digital Object Identifier
- Title
-
Spline local basis methods for nonparametric density estimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Justin Kirkby, Álvaro Leitao, Duy NguyenList of authors in order
- Landing page
-
https://doi.org/10.1214/23-ss142Publisher landing page
- PDF URL
-
https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdfDirect OA link when available
- Concepts
-
Estimator, Multivariate kernel density estimation, Kernel density estimation, Spline (mechanical), Density estimation, Nonparametric statistics, Estimation, Econometrics, Basis (linear algebra), Parallels, Mathematics, Parametric statistics, Kernel (algebra), Computer science, Statistics, Variable kernel density estimation, Artificial intelligence, Kernel method, Economics, Engineering, Geometry, Operations management, Support vector machine, Structural engineering, Management, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
121Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4362503397 |
|---|---|
| doi | https://doi.org/10.1214/23-ss142 |
| ids.doi | https://doi.org/10.1214/23-ss142 |
| ids.openalex | https://openalex.org/W4362503397 |
| fwci | 3.83135521 |
| type | article |
| title | Spline local basis methods for nonparametric density estimation |
| biblio.issue | none |
| biblio.volume | 17 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T11236 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.988099992275238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Control Systems and Identification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7452088594436646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C84894716 |
| concepts[1].level | 5 |
| concepts[1].score | 0.7029918432235718 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6935135 |
| concepts[1].display_name | Multivariate kernel density estimation |
| concepts[2].id | https://openalex.org/C71134354 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6569278240203857 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q458825 |
| concepts[2].display_name | Kernel density estimation |
| concepts[3].id | https://openalex.org/C10390562 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5664998888969421 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q581809 |
| concepts[3].display_name | Spline (mechanical) |
| concepts[4].id | https://openalex.org/C189508267 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5465840697288513 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17088227 |
| concepts[4].display_name | Density estimation |
| concepts[5].id | https://openalex.org/C102366305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5419323444366455 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[5].display_name | Nonparametric statistics |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5295717716217041 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5295572876930237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C12426560 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5165058970451355 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[8].display_name | Basis (linear algebra) |
| concepts[9].id | https://openalex.org/C2775922551 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4977770149707794 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7135033 |
| concepts[9].display_name | Parallels |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.45064929127693176 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C117251300 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45064765214920044 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[11].display_name | Parametric statistics |
| concepts[12].id | https://openalex.org/C74193536 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4252033531665802 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[12].display_name | Kernel (algebra) |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.42207586765289307 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34267744421958923 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C195699287 |
| concepts[15].level | 4 |
| concepts[15].score | 0.32497620582580566 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7915722 |
| concepts[15].display_name | Variable kernel density estimation |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.24153798818588257 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C122280245 |
| concepts[17].level | 3 |
| concepts[17].score | 0.22520855069160461 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[17].display_name | Kernel method |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.14249035716056824 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.083651602268219 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| concepts[21].id | https://openalex.org/C21547014 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[21].display_name | Operations management |
| concepts[22].id | https://openalex.org/C12267149 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[22].display_name | Support vector machine |
| concepts[23].id | https://openalex.org/C66938386 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[23].display_name | Structural engineering |
| concepts[24].id | https://openalex.org/C187736073 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[24].display_name | Management |
| concepts[25].id | https://openalex.org/C114614502 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[25].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.7452088594436646 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/multivariate-kernel-density-estimation |
| keywords[1].score | 0.7029918432235718 |
| keywords[1].display_name | Multivariate kernel density estimation |
| keywords[2].id | https://openalex.org/keywords/kernel-density-estimation |
| keywords[2].score | 0.6569278240203857 |
| keywords[2].display_name | Kernel density estimation |
| keywords[3].id | https://openalex.org/keywords/spline |
| keywords[3].score | 0.5664998888969421 |
| keywords[3].display_name | Spline (mechanical) |
| keywords[4].id | https://openalex.org/keywords/density-estimation |
| keywords[4].score | 0.5465840697288513 |
| keywords[4].display_name | Density estimation |
| keywords[5].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[5].score | 0.5419323444366455 |
| keywords[5].display_name | Nonparametric statistics |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.5295717716217041 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.5295572876930237 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/basis |
| keywords[8].score | 0.5165058970451355 |
| keywords[8].display_name | Basis (linear algebra) |
| keywords[9].id | https://openalex.org/keywords/parallels |
| keywords[9].score | 0.4977770149707794 |
| keywords[9].display_name | Parallels |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.45064929127693176 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/parametric-statistics |
| keywords[11].score | 0.45064765214920044 |
| keywords[11].display_name | Parametric statistics |
| keywords[12].id | https://openalex.org/keywords/kernel |
| keywords[12].score | 0.4252033531665802 |
| keywords[12].display_name | Kernel (algebra) |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.42207586765289307 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.34267744421958923 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/variable-kernel-density-estimation |
| keywords[15].score | 0.32497620582580566 |
| keywords[15].display_name | Variable kernel density estimation |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.24153798818588257 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/kernel-method |
| keywords[17].score | 0.22520855069160461 |
| keywords[17].display_name | Kernel method |
| keywords[18].id | https://openalex.org/keywords/economics |
| keywords[18].score | 0.14249035716056824 |
| keywords[18].display_name | Economics |
| keywords[19].id | https://openalex.org/keywords/engineering |
| keywords[19].score | 0.083651602268219 |
| keywords[19].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1214/23-ss142 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S147498506 |
| locations[0].source.issn | 1935-7516 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1935-7516 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistics Surveys |
| locations[0].source.host_organization | https://openalex.org/P4310315749 |
| locations[0].source.host_organization_name | American Statistical Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315749 |
| locations[0].source.host_organization_lineage_names | American Statistical Association |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistics Surveys |
| locations[0].landing_page_url | https://doi.org/10.1214/23-ss142 |
| locations[1].id | pmh:oai:ruc.udc.es:2183/33761 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402204 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | RUC (Universidade Da Coruña) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://ruc.udc.es/dspace/bitstream/2183/33761/3/Leitao_Alvaro_2023_Spline_local_basis_methods_for_nonparametric_density_estimation.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/2183/33761 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051493924 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7005-9081 |
| authorships[0].author.display_name | Justin Kirkby |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States |
| authorships[0].institutions[0].id | https://openalex.org/I130701444 |
| authorships[0].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Georgia Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. Lars Kirkby |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States |
| authorships[1].author.id | https://openalex.org/A5047745167 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3442-4587 |
| authorships[1].author.display_name | Álvaro Leitao |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I138847295 |
| authorships[1].affiliations[0].raw_affiliation_string | Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I138847295 |
| authorships[1].institutions[0].ror | https://ror.org/01f5wp925 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I138847295 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universitat Oberta de Catalunya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Álvaro Leitao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain |
| authorships[2].author.id | https://openalex.org/A5112686818 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6001-4883 |
| authorships[2].author.display_name | Duy Nguyen |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I926137907 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, Marist College, Poughkeepsie, NY 12601, United States |
| authorships[2].institutions[0].id | https://openalex.org/I926137907 |
| authorships[2].institutions[0].ror | https://ror.org/04wx3x242 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I926137907 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Marist College |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Duy Nguyen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, Marist College, Poughkeepsie, NY 12601, United States |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Spline local basis methods for nonparametric density estimation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W4241010850, https://openalex.org/W3212687977, https://openalex.org/W1482149696, https://openalex.org/W2355371556, https://openalex.org/W3123419490, https://openalex.org/W2144201579, https://openalex.org/W1834385407, https://openalex.org/W2026307144, https://openalex.org/W2545560175, https://openalex.org/W2776263260 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1214/23-ss142 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S147498506 |
| best_oa_location.source.issn | 1935-7516 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1935-7516 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistics Surveys |
| best_oa_location.source.host_organization | https://openalex.org/P4310315749 |
| best_oa_location.source.host_organization_name | American Statistical Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315749 |
| best_oa_location.source.host_organization_lineage_names | American Statistical Association |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistics Surveys |
| best_oa_location.landing_page_url | https://doi.org/10.1214/23-ss142 |
| primary_location.id | doi:10.1214/23-ss142 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S147498506 |
| primary_location.source.issn | 1935-7516 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1935-7516 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistics Surveys |
| primary_location.source.host_organization | https://openalex.org/P4310315749 |
| primary_location.source.host_organization_name | American Statistical Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315749 |
| primary_location.source.host_organization_lineage_names | American Statistical Association |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://projecteuclid.org/journals/statistics-surveys/volume-17/issue-none/Spline-local-basis-methods-for-nonparametric-density-estimation/10.1214/23-SS142.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistics Surveys |
| primary_location.landing_page_url | https://doi.org/10.1214/23-ss142 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2033484654, https://openalex.org/W1977546873, https://openalex.org/W2102098892, https://openalex.org/W3123346882, https://openalex.org/W2122883310, https://openalex.org/W58740540, https://openalex.org/W2153464267, https://openalex.org/W2129525927, https://openalex.org/W2126347747, https://openalex.org/W2046983567, https://openalex.org/W4292170079, https://openalex.org/W4205634890, https://openalex.org/W3193044597, https://openalex.org/W3044225803, https://openalex.org/W3085668616, https://openalex.org/W2368928165, https://openalex.org/W2520466036, https://openalex.org/W2120714307, https://openalex.org/W2119477857, https://openalex.org/W2046031028, https://openalex.org/W2042574171, https://openalex.org/W1990420052, https://openalex.org/W2073587703, https://openalex.org/W3135244816, https://openalex.org/W2137295153, https://openalex.org/W1967351845, https://openalex.org/W2047883355, https://openalex.org/W4256561644, https://openalex.org/W1998596380, https://openalex.org/W2038785998, https://openalex.org/W2126342974, https://openalex.org/W2078614528, https://openalex.org/W2015953335, https://openalex.org/W2207686624, https://openalex.org/W2055215308, https://openalex.org/W2219217038, https://openalex.org/W1971152913, https://openalex.org/W2064900365, https://openalex.org/W2071905521, https://openalex.org/W2081827563, https://openalex.org/W2024983310, https://openalex.org/W1992641732, https://openalex.org/W3119704083, https://openalex.org/W269322745, https://openalex.org/W2344480892, https://openalex.org/W2037733739, https://openalex.org/W2141620354, https://openalex.org/W1493207670, https://openalex.org/W1542792663, https://openalex.org/W3123264247, https://openalex.org/W2222632714, https://openalex.org/W3126026110, https://openalex.org/W3134787383, https://openalex.org/W2022877762, https://openalex.org/W2015590891, https://openalex.org/W2112188837, https://openalex.org/W1964740999, https://openalex.org/W1995094583, https://openalex.org/W2595888202, https://openalex.org/W2986315332, https://openalex.org/W2510099899, https://openalex.org/W2051195364, https://openalex.org/W1999609679, https://openalex.org/W2064332562, https://openalex.org/W3154675872, https://openalex.org/W1973385701, https://openalex.org/W2118020555, https://openalex.org/W2001597716, https://openalex.org/W2150640448, https://openalex.org/W4224949960, https://openalex.org/W2493255173, https://openalex.org/W2023734903, https://openalex.org/W2949147833, https://openalex.org/W2068478622, https://openalex.org/W2045061669, https://openalex.org/W2001747543, https://openalex.org/W1976772501, https://openalex.org/W2014268383, https://openalex.org/W4244087046, https://openalex.org/W3121747801, https://openalex.org/W1423766661, https://openalex.org/W1992098783, https://openalex.org/W1997225897, https://openalex.org/W2084285929, https://openalex.org/W1540375479, https://openalex.org/W1489950266, https://openalex.org/W2052953139, https://openalex.org/W2050947749, https://openalex.org/W2116751005, https://openalex.org/W2136452524, https://openalex.org/W2108486592, https://openalex.org/W2042555804, https://openalex.org/W2020929440, https://openalex.org/W2096475958, https://openalex.org/W2904277698, https://openalex.org/W1988568575, https://openalex.org/W2017792954, https://openalex.org/W2092015529, https://openalex.org/W2383878747, https://openalex.org/W2094771755, https://openalex.org/W2147543736, https://openalex.org/W1524622012, https://openalex.org/W2179504854, https://openalex.org/W3124075218, https://openalex.org/W2965315875, https://openalex.org/W2999848242, https://openalex.org/W4313648896, https://openalex.org/W1998378660, https://openalex.org/W4252979015, https://openalex.org/W79918814, https://openalex.org/W4235667863, https://openalex.org/W2606866400, https://openalex.org/W2108447811, https://openalex.org/W2116718775, https://openalex.org/W2119047368, https://openalex.org/W1997390132, https://openalex.org/W2014258304, https://openalex.org/W3104020249, https://openalex.org/W3098975031, https://openalex.org/W3104298728, https://openalex.org/W3104877591 |
| referenced_works_count | 121 |
| abstract_inverted_index.a | 36, 66 |
| abstract_inverted_index.at | 45 |
| abstract_inverted_index.in | 28, 40, 65, 108 |
| abstract_inverted_index.is | 17, 94 |
| abstract_inverted_index.of | 48, 80, 90 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.to | 19, 59, 75, 104 |
| abstract_inverted_index.New | 52 |
| abstract_inverted_index.and | 31, 55, 71, 99 |
| abstract_inverted_index.are | 57, 73 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.not | 95 |
| abstract_inverted_index.the | 4, 46, 61, 76, 88, 106 |
| abstract_inverted_index.yet | 96 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.aims | 103 |
| abstract_inverted_index.also | 102 |
| abstract_inverted_index.both | 29 |
| abstract_inverted_index.cast | 60 |
| abstract_inverted_index.gaps | 107 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.lies | 43 |
| abstract_inverted_index.more | 77 |
| abstract_inverted_index.paid | 18 |
| abstract_inverted_index.this | 100 |
| abstract_inverted_index.very | 37 |
| abstract_inverted_index.work | 2, 101 |
| abstract_inverted_index.These | 33 |
| abstract_inverted_index.aptly | 44 |
| abstract_inverted_index.basis | 9, 92 |
| abstract_inverted_index.drawn | 74 |
| abstract_inverted_index.fully | 97 |
| abstract_inverted_index.local | 8, 91 |
| abstract_inverted_index.merit | 112 |
| abstract_inverted_index.space | 39 |
| abstract_inverted_index.study | 89 |
| abstract_inverted_index.which | 23, 42, 111 |
| abstract_inverted_index.while | 69 |
| abstract_inverted_index.Unlike | 84 |
| abstract_inverted_index.kernel | 81, 85 |
| abstract_inverted_index.occupy | 35 |
| abstract_inverted_index.recent | 26 |
| abstract_inverted_index.spline | 7 |
| abstract_inverted_index.theory | 30 |
| abstract_inverted_index.density | 13, 21, 82, 86 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.mature, | 98 |
| abstract_inverted_index.methods | 10 |
| abstract_inverted_index.reviews | 3 |
| abstract_inverted_index.unified | 67 |
| abstract_inverted_index.various | 62 |
| abstract_inverted_index.B-spline | 20 |
| abstract_inverted_index.advances | 27 |
| abstract_inverted_index.analyses | 56 |
| abstract_inverted_index.concepts | 64 |
| abstract_inverted_index.context, | 68 |
| abstract_inverted_index.contexts | 79 |
| abstract_inverted_index.existing | 109 |
| abstract_inverted_index.familiar | 78 |
| abstract_inverted_index.numerous | 49 |
| abstract_inverted_index.attention | 16 |
| abstract_inverted_index.contrasts | 72 |
| abstract_inverted_index.highlight | 105 |
| abstract_inverted_index.insights, | 53 |
| abstract_inverted_index.parallels | 70 |
| abstract_inverted_index.presented | 58 |
| abstract_inverted_index.Particular | 15 |
| abstract_inverted_index.estimation | 63, 93 |
| abstract_inverted_index.estimators | 22, 34 |
| abstract_inverted_index.literature | 5, 110 |
| abstract_inverted_index.[Abstract]: | 0 |
| abstract_inverted_index.estimation, | 87 |
| abstract_inverted_index.estimation. | 14, 83 |
| abstract_inverted_index.experienced | 25 |
| abstract_inverted_index.frameworks. | 51 |
| abstract_inverted_index.interesting | 38 |
| abstract_inverted_index.statistical | 50 |
| abstract_inverted_index.statistics, | 41 |
| abstract_inverted_index.experiments, | 54 |
| abstract_inverted_index.methodology. | 32 |
| abstract_inverted_index.cross-section | 47 |
| abstract_inverted_index.investigation. | 114 |
| abstract_inverted_index.non-parametric | 12 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.89146699 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |