SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/jsait.2021.3103920
In this paper, we propose and analyze SQuARM-SGD, a communication-efficient algorithm for decentralized training of large-scale machine learning models over a network. In SQuARM-SGD, each node performs a fixed number of local SGD steps using Nesterov's momentum and then sends sparsified and quantized updates to its neighbors regulated by a locally computable triggering criterion. We provide convergence guarantees of our algorithm for general (non-convex) and convex smooth objectives, which, to the best of our knowledge, is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that the convergence rate of SQuARM-SGD matches that of vanilla SGD. We empirically show that including momentum updates in SQuARM-SGD can lead to better test performance than the current state-of-the-art which does not consider momentum updates.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/isit45174.2021.9517986
- OA Status
- green
- Cited By
- 16
- References
- 76
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3024856659
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3024856659Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jsait.2021.3103920Digital Object Identifier
- Title
-
SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-13Full publication date if available
- Authors
-
Navjot Singh, Deepesh Data, Jemin George, Suhas DiggaviList of authors in order
- Landing page
-
https://doi.org/10.1109/isit45174.2021.9517986Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.07041Direct OA link when available
- Concepts
-
Momentum (technical analysis), Stochastic gradient descent, Regular polygon, Convergence (economics), Rate of convergence, Convex function, Matching (statistics), Mathematics, Computer science, Algorithm, Mathematical optimization, Combinatorics, Artificial intelligence, Artificial neural network, Geometry, Telecommunications, Statistics, Economics, Finance, Channel (broadcasting), Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1, 2022: 1, 2021: 10, 2020: 3Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3024856659 |
|---|---|
| doi | https://doi.org/10.1109/jsait.2021.3103920 |
| ids.doi | https://doi.org/10.1109/jsait.2021.3103920 |
| ids.mag | 3024856659 |
| ids.openalex | https://openalex.org/W3024856659 |
| fwci | 1.6932429 |
| type | preprint |
| title | SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 969 |
| biblio.first_page | 954 |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C60718061 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6608278155326843 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1414747 |
| concepts[0].display_name | Momentum (technical analysis) |
| concepts[1].id | https://openalex.org/C206688291 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6549032926559448 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7617819 |
| concepts[1].display_name | Stochastic gradient descent |
| concepts[2].id | https://openalex.org/C112680207 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6305593848228455 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[2].display_name | Regular polygon |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5453453063964844 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C57869625 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5085994005203247 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1783502 |
| concepts[4].display_name | Rate of convergence |
| concepts[5].id | https://openalex.org/C145446738 |
| concepts[5].level | 3 |
| concepts[5].score | 0.47496363520622253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q319913 |
| concepts[5].display_name | Convex function |
| concepts[6].id | https://openalex.org/C165064840 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45779141783714294 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[6].display_name | Matching (statistics) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.45100274682044983 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.41718220710754395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41166672110557556 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3425721824169159 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C114614502 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3307614326477051 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[11].display_name | Combinatorics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24236392974853516 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.2116939127445221 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15384900569915771 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11313682794570923 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10122114419937134 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C10138342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[18].display_name | Finance |
| concepts[19].id | https://openalex.org/C127162648 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[19].display_name | Channel (broadcasting) |
| concepts[20].id | https://openalex.org/C50522688 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[20].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/momentum |
| keywords[0].score | 0.6608278155326843 |
| keywords[0].display_name | Momentum (technical analysis) |
| keywords[1].id | https://openalex.org/keywords/stochastic-gradient-descent |
| keywords[1].score | 0.6549032926559448 |
| keywords[1].display_name | Stochastic gradient descent |
| keywords[2].id | https://openalex.org/keywords/regular-polygon |
| keywords[2].score | 0.6305593848228455 |
| keywords[2].display_name | Regular polygon |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.5453453063964844 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/rate-of-convergence |
| keywords[4].score | 0.5085994005203247 |
| keywords[4].display_name | Rate of convergence |
| keywords[5].id | https://openalex.org/keywords/convex-function |
| keywords[5].score | 0.47496363520622253 |
| keywords[5].display_name | Convex function |
| keywords[6].id | https://openalex.org/keywords/matching |
| keywords[6].score | 0.45779141783714294 |
| keywords[6].display_name | Matching (statistics) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.45100274682044983 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.41718220710754395 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.41166672110557556 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[10].score | 0.3425721824169159 |
| keywords[10].display_name | Mathematical optimization |
| keywords[11].id | https://openalex.org/keywords/combinatorics |
| keywords[11].score | 0.3307614326477051 |
| keywords[11].display_name | Combinatorics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.24236392974853516 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.2116939127445221 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.15384900569915771 |
| keywords[14].display_name | Geometry |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.11313682794570923 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.10122114419937134 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1109/isit45174.2021.9517986 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE International Symposium on Information Theory (ISIT) |
| locations[0].landing_page_url | https://doi.org/10.1109/isit45174.2021.9517986 |
| locations[1].id | doi:10.1109/jsait.2021.3103920 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4210211895 |
| locations[1].source.issn | 2641-8770 |
| locations[1].source.type | journal |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | 2641-8770 |
| locations[1].source.is_core | True |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | IEEE Journal on Selected Areas in Information Theory |
| locations[1].source.host_organization | https://openalex.org/P4310319808 |
| locations[1].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[1].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[1].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | journal-article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE Journal on Selected Areas in Information Theory |
| locations[1].landing_page_url | https://doi.org/10.1109/jsait.2021.3103920 |
| locations[2].id | pmh:oai:arXiv.org:2005.07041 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2005.07041 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2005.07041 |
| locations[3].id | doi:10.48550/arxiv.2005.07041 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2005.07041 |
| locations[4].id | mag:3024856659 |
| locations[4].is_oa | False |
| locations[4].source | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5063703765 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0360-2915 |
| authorships[0].author.display_name | Navjot Singh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California-Los Angeles |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Navjot Singh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California-Los Angeles |
| authorships[1].author.id | https://openalex.org/A5023777978 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3544-8414 |
| authorships[1].author.display_name | Deepesh Data |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California Los Angeles, USA |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deepesh Data |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California Los Angeles, USA |
| authorships[2].author.id | https://openalex.org/A5054187846 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8417-5411 |
| authorships[2].author.display_name | Jemin George |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California-Los Angeles |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jemin George |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of California-Los Angeles |
| authorships[3].author.id | https://openalex.org/A5083980887 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7313-9861 |
| authorships[3].author.display_name | Suhas Diggavi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[3].affiliations[0].raw_affiliation_string | University of California Los Angeles, USA |
| authorships[3].institutions[0].id | https://openalex.org/I161318765 |
| authorships[3].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Los Angeles |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Suhas Diggavi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of California Los Angeles, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.07041 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SQuARM-SGD: Communication-Efficient Momentum SGD for Decentralized Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W3191152329, https://openalex.org/W2971064744, https://openalex.org/W2963664311, https://openalex.org/W2890924858, https://openalex.org/W2769644379, https://openalex.org/W2963179579, https://openalex.org/W2964004663, https://openalex.org/W2963766684, https://openalex.org/W2963228337, https://openalex.org/W2547352193, https://openalex.org/W3034578623, https://openalex.org/W3175155662, https://openalex.org/W3119652720, https://openalex.org/W3106387899, https://openalex.org/W2886404071, https://openalex.org/W2990061623, https://openalex.org/W2982648258, https://openalex.org/W2982408624, https://openalex.org/W2529853123, https://openalex.org/W3000203168 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 10 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.07041 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.07041 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.07041 |
| primary_location.id | doi:10.1109/isit45174.2021.9517986 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE International Symposium on Information Theory (ISIT) |
| primary_location.landing_page_url | https://doi.org/10.1109/isit45174.2021.9517986 |
| publication_date | 2021-08-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2783291400, https://openalex.org/W2913804488, https://openalex.org/W2019166202, https://openalex.org/W2191781618, https://openalex.org/W2167183308, https://openalex.org/W6768660345, https://openalex.org/W1985235885, https://openalex.org/W6774804355, https://openalex.org/W6738491991, https://openalex.org/W6762421227, https://openalex.org/W3038057116, https://openalex.org/W2057929279, https://openalex.org/W2166132612, https://openalex.org/W6758358981, https://openalex.org/W6751961731, https://openalex.org/W6748019269, https://openalex.org/W3015640161, https://openalex.org/W6763549698, https://openalex.org/W6752191696, https://openalex.org/W2900182564, https://openalex.org/W6756561314, https://openalex.org/W6628022308, https://openalex.org/W2808402975, https://openalex.org/W6738250615, https://openalex.org/W6754529011, https://openalex.org/W3119652720, https://openalex.org/W6788502999, https://openalex.org/W2964137440, https://openalex.org/W6762930437, https://openalex.org/W6746839373, https://openalex.org/W6756976665, https://openalex.org/W2606891064, https://openalex.org/W6754341472, https://openalex.org/W6754416507, https://openalex.org/W6738460352, https://openalex.org/W6746200960, https://openalex.org/W6713835734, https://openalex.org/W6728975057, https://openalex.org/W2535838896, https://openalex.org/W6765843025, https://openalex.org/W6725543821, https://openalex.org/W6763393679, https://openalex.org/W6758557334, https://openalex.org/W2194775991, https://openalex.org/W6745458143, https://openalex.org/W6777590253, https://openalex.org/W2963617134, https://openalex.org/W1415242555, https://openalex.org/W2946815927, https://openalex.org/W2996118901, https://openalex.org/W2547352193, https://openalex.org/W2405578611, https://openalex.org/W2890924858, https://openalex.org/W2963228337, https://openalex.org/W2963208657, https://openalex.org/W2108598243, https://openalex.org/W2963179579, https://openalex.org/W2996693845, https://openalex.org/W2911327153, https://openalex.org/W2962863496, https://openalex.org/W2964004663, https://openalex.org/W2888561381, https://openalex.org/W2963766684, https://openalex.org/W2963000224, https://openalex.org/W3034741284, https://openalex.org/W2911863041, https://openalex.org/W2902410171, https://openalex.org/W2971342441, https://openalex.org/W2944602733, https://openalex.org/W2963803379, https://openalex.org/W2971064744, https://openalex.org/W2889676205, https://openalex.org/W2963773265, https://openalex.org/W2944542720, https://openalex.org/W2963664311, https://openalex.org/W3101036738 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 8, 20, 27, 49 |
| abstract_inverted_index.In | 0, 22 |
| abstract_inverted_index.We | 54, 87, 100 |
| abstract_inverted_index.by | 48 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 14, 30, 58, 72, 93, 97 |
| abstract_inverted_index.to | 44, 69, 111 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.SGD | 32, 83 |
| abstract_inverted_index.and | 5, 37, 41, 64 |
| abstract_inverted_index.can | 109 |
| abstract_inverted_index.for | 11, 61, 80 |
| abstract_inverted_index.its | 45 |
| abstract_inverted_index.not | 121 |
| abstract_inverted_index.our | 59, 73 |
| abstract_inverted_index.the | 70, 76, 90, 116 |
| abstract_inverted_index.SGD. | 99 |
| abstract_inverted_index.best | 71 |
| abstract_inverted_index.does | 120 |
| abstract_inverted_index.each | 24 |
| abstract_inverted_index.lead | 110 |
| abstract_inverted_index.node | 25 |
| abstract_inverted_index.over | 19 |
| abstract_inverted_index.rate | 92 |
| abstract_inverted_index.show | 88, 102 |
| abstract_inverted_index.test | 113 |
| abstract_inverted_index.than | 115 |
| abstract_inverted_index.that | 89, 96, 103 |
| abstract_inverted_index.then | 38 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 84 |
| abstract_inverted_index.first | 77 |
| abstract_inverted_index.fixed | 28 |
| abstract_inverted_index.local | 31 |
| abstract_inverted_index.sends | 39 |
| abstract_inverted_index.steps | 33 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.which | 119 |
| abstract_inverted_index.better | 112 |
| abstract_inverted_index.convex | 65 |
| abstract_inverted_index.models | 18 |
| abstract_inverted_index.number | 29 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.smooth | 66 |
| abstract_inverted_index.which, | 68 |
| abstract_inverted_index.analyze | 6 |
| abstract_inverted_index.current | 117 |
| abstract_inverted_index.general | 62 |
| abstract_inverted_index.locally | 50 |
| abstract_inverted_index.machine | 16 |
| abstract_inverted_index.matches | 95 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.provide | 55 |
| abstract_inverted_index.updates | 43, 106 |
| abstract_inverted_index.vanilla | 98 |
| abstract_inverted_index.analysis | 79 |
| abstract_inverted_index.consider | 122 |
| abstract_inverted_index.learning | 17 |
| abstract_inverted_index.momentum | 36, 85, 105, 123 |
| abstract_inverted_index.network. | 21 |
| abstract_inverted_index.performs | 26 |
| abstract_inverted_index.training | 13 |
| abstract_inverted_index.updates. | 86, 124 |
| abstract_inverted_index.algorithm | 10, 60 |
| abstract_inverted_index.including | 104 |
| abstract_inverted_index.neighbors | 46 |
| abstract_inverted_index.quantized | 42 |
| abstract_inverted_index.regulated | 47 |
| abstract_inverted_index.Nesterov's | 35 |
| abstract_inverted_index.SQuARM-SGD | 94, 108 |
| abstract_inverted_index.compressed | 81 |
| abstract_inverted_index.computable | 51 |
| abstract_inverted_index.criterion. | 53 |
| abstract_inverted_index.guarantees | 57 |
| abstract_inverted_index.knowledge, | 74 |
| abstract_inverted_index.sparsified | 40 |
| abstract_inverted_index.triggering | 52 |
| abstract_inverted_index.SQuARM-SGD, | 7, 23 |
| abstract_inverted_index.convergence | 56, 91 |
| abstract_inverted_index.empirically | 101 |
| abstract_inverted_index.large-scale | 15 |
| abstract_inverted_index.objectives, | 67 |
| abstract_inverted_index.performance | 114 |
| abstract_inverted_index.theoretical | 78 |
| abstract_inverted_index.(non-convex) | 63 |
| abstract_inverted_index.decentralized | 12, 82 |
| abstract_inverted_index.state-of-the-art | 118 |
| abstract_inverted_index.communication-efficient | 9 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.86676936 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |