Squeezed Diffusion Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.14871
Diffusion models typically inject isotropic Gaussian noise, disregarding structure in the data. Motivated by the way quantum squeezed states redistribute uncertainty according to the Heisenberg uncertainty principle, we introduce Squeezed Diffusion Models (SDM), which scale noise anisotropically along the principal component of the training distribution. As squeezing enhances the signal-to-noise ratio in physics, we hypothesize that scaling noise in a data-dependent manner can better assist diffusion models in learning important data features. We study two configurations: (i) a Heisenberg diffusion model that compensates the scaling on the principal axis with inverse scaling on orthogonal directions and (ii) a standard SDM variant that scales only the principal axis. Counterintuitively, on CIFAR-10/100 and CelebA-64, mild antisqueezing - i.e. increasing variance on the principal axis - consistently improves FID by up to 15% and shifts the precision-recall frontier toward higher recall. Our results demonstrate that simple, data-aware noise shaping can deliver robust generative gains without architectural changes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.14871
- https://arxiv.org/pdf/2508.14871
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415241229
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415241229Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.14871Digital Object Identifier
- Title
-
Squeezed Diffusion ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-20Full publication date if available
- Authors
-
Jarnail Singh, Sudhir Khanna, James BurgessList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.14871Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.14871Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.14871Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415241229 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.14871 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.14871 |
| ids.openalex | https://openalex.org/W4415241229 |
| fwci | |
| type | preprint |
| title | Squeezed Diffusion Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11379 |
| topics[0].field.id | https://openalex.org/fields/15 |
| topics[0].field.display_name | Chemical Engineering |
| topics[0].score | 0.7617999911308289 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1507 |
| topics[0].subfield.display_name | Fluid Flow and Transfer Processes |
| topics[0].display_name | Rheology and Fluid Dynamics Studies |
| topics[1].id | https://openalex.org/T12100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6758000254631042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Mathematical Modeling in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.14871 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.14871 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.14871 |
| locations[1].id | doi:10.48550/arxiv.2508.14871 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.14871 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101447227 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6032-2376 |
| authorships[0].author.display_name | Jarnail Singh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Singh, Jyotirmai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113814254 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sudhir Khanna |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khanna, Samar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064226280 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0823-2848 |
| authorships[2].author.display_name | James Burgess |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Burgess, James |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.14871 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-16T00:00:00 |
| display_name | Squeezed Diffusion Models |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11379 |
| primary_topic.field.id | https://openalex.org/fields/15 |
| primary_topic.field.display_name | Chemical Engineering |
| primary_topic.score | 0.7617999911308289 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1507 |
| primary_topic.subfield.display_name | Fluid Flow and Transfer Processes |
| primary_topic.display_name | Rheology and Fluid Dynamics Studies |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.14871 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.14871 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.14871 |
| primary_location.id | pmh:oai:arXiv.org:2508.14871 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.14871 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.14871 |
| publication_date | 2025-08-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 114, 122 |
| abstract_inverted_index.a | 59, 77, 97 |
| abstract_inverted_index.As | 45 |
| abstract_inverted_index.We | 72 |
| abstract_inverted_index.by | 13, 126 |
| abstract_inverted_index.in | 9, 51, 58, 67 |
| abstract_inverted_index.of | 41 |
| abstract_inverted_index.on | 85, 92, 108, 118 |
| abstract_inverted_index.to | 22, 128 |
| abstract_inverted_index.up | 127 |
| abstract_inverted_index.we | 27, 53 |
| abstract_inverted_index.(i) | 76 |
| abstract_inverted_index.15% | 129 |
| abstract_inverted_index.FID | 125 |
| abstract_inverted_index.Our | 138 |
| abstract_inverted_index.SDM | 99 |
| abstract_inverted_index.and | 95, 110, 130 |
| abstract_inverted_index.can | 62, 146 |
| abstract_inverted_index.the | 10, 14, 23, 38, 42, 48, 83, 86, 104, 119, 132 |
| abstract_inverted_index.two | 74 |
| abstract_inverted_index.way | 15 |
| abstract_inverted_index.(ii) | 96 |
| abstract_inverted_index.axis | 88, 121 |
| abstract_inverted_index.data | 70 |
| abstract_inverted_index.i.e. | 115 |
| abstract_inverted_index.mild | 112 |
| abstract_inverted_index.only | 103 |
| abstract_inverted_index.that | 55, 81, 101, 141 |
| abstract_inverted_index.with | 89 |
| abstract_inverted_index.along | 37 |
| abstract_inverted_index.axis. | 106 |
| abstract_inverted_index.data. | 11 |
| abstract_inverted_index.gains | 150 |
| abstract_inverted_index.model | 80 |
| abstract_inverted_index.noise | 35, 57, 144 |
| abstract_inverted_index.ratio | 50 |
| abstract_inverted_index.scale | 34 |
| abstract_inverted_index.study | 73 |
| abstract_inverted_index.which | 33 |
| abstract_inverted_index.(SDM), | 32 |
| abstract_inverted_index.Models | 31 |
| abstract_inverted_index.assist | 64 |
| abstract_inverted_index.better | 63 |
| abstract_inverted_index.higher | 136 |
| abstract_inverted_index.inject | 3 |
| abstract_inverted_index.manner | 61 |
| abstract_inverted_index.models | 1, 66 |
| abstract_inverted_index.noise, | 6 |
| abstract_inverted_index.robust | 148 |
| abstract_inverted_index.scales | 102 |
| abstract_inverted_index.shifts | 131 |
| abstract_inverted_index.states | 18 |
| abstract_inverted_index.toward | 135 |
| abstract_inverted_index.deliver | 147 |
| abstract_inverted_index.inverse | 90 |
| abstract_inverted_index.quantum | 16 |
| abstract_inverted_index.recall. | 137 |
| abstract_inverted_index.results | 139 |
| abstract_inverted_index.scaling | 56, 84, 91 |
| abstract_inverted_index.shaping | 145 |
| abstract_inverted_index.simple, | 142 |
| abstract_inverted_index.variant | 100 |
| abstract_inverted_index.without | 151 |
| abstract_inverted_index.Gaussian | 5 |
| abstract_inverted_index.Squeezed | 29 |
| abstract_inverted_index.changes. | 153 |
| abstract_inverted_index.enhances | 47 |
| abstract_inverted_index.frontier | 134 |
| abstract_inverted_index.improves | 124 |
| abstract_inverted_index.learning | 68 |
| abstract_inverted_index.physics, | 52 |
| abstract_inverted_index.squeezed | 17 |
| abstract_inverted_index.standard | 98 |
| abstract_inverted_index.training | 43 |
| abstract_inverted_index.variance | 117 |
| abstract_inverted_index.Diffusion | 0, 30 |
| abstract_inverted_index.Motivated | 12 |
| abstract_inverted_index.according | 21 |
| abstract_inverted_index.component | 40 |
| abstract_inverted_index.diffusion | 65, 79 |
| abstract_inverted_index.features. | 71 |
| abstract_inverted_index.important | 69 |
| abstract_inverted_index.introduce | 28 |
| abstract_inverted_index.isotropic | 4 |
| abstract_inverted_index.principal | 39, 87, 105, 120 |
| abstract_inverted_index.squeezing | 46 |
| abstract_inverted_index.structure | 8 |
| abstract_inverted_index.typically | 2 |
| abstract_inverted_index.CelebA-64, | 111 |
| abstract_inverted_index.Heisenberg | 24, 78 |
| abstract_inverted_index.data-aware | 143 |
| abstract_inverted_index.directions | 94 |
| abstract_inverted_index.generative | 149 |
| abstract_inverted_index.increasing | 116 |
| abstract_inverted_index.orthogonal | 93 |
| abstract_inverted_index.principle, | 26 |
| abstract_inverted_index.compensates | 82 |
| abstract_inverted_index.demonstrate | 140 |
| abstract_inverted_index.hypothesize | 54 |
| abstract_inverted_index.uncertainty | 20, 25 |
| abstract_inverted_index.CIFAR-10/100 | 109 |
| abstract_inverted_index.consistently | 123 |
| abstract_inverted_index.disregarding | 7 |
| abstract_inverted_index.redistribute | 19 |
| abstract_inverted_index.antisqueezing | 113 |
| abstract_inverted_index.architectural | 152 |
| abstract_inverted_index.distribution. | 44 |
| abstract_inverted_index.data-dependent | 60 |
| abstract_inverted_index.anisotropically | 36 |
| abstract_inverted_index.configurations: | 75 |
| abstract_inverted_index.signal-to-noise | 49 |
| abstract_inverted_index.precision-recall | 133 |
| abstract_inverted_index.Counterintuitively, | 107 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |