SSCNet: A Spectrum-Space Collaborative Network for Semantic Segmentation of Remote Sensing Images Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/rs15235610
Semantic segmentation plays a pivotal role in the intelligent interpretation of remote sensing images (RSIs). However, conventional methods predominantly focus on learning representations within the spatial domain, often resulting in suboptimal discriminative capabilities. Given the intrinsic spectral characteristics of RSIs, it becomes imperative to enhance the discriminative potential of these representations by integrating spectral context alongside spatial information. In this paper, we introduce the spectrum-space collaborative network (SSCNet), which is designed to capture both spectral and spatial dependencies, thereby elevating the quality of semantic segmentation in RSIs. Our innovative approach features a joint spectral–spatial attention module (JSSA) that concurrently employs spectral attention (SpeA) and spatial attention (SpaA). Instead of feature-level aggregation, we propose the fusion of attention maps to gather spectral and spatial contexts from their respective branches. Within SpeA, we calculate the position-wise spectral similarity using the complex spectral Euclidean distance (CSED) of the real and imaginary components of projected feature maps in the frequency domain. To comprehensively calculate both spectral and spatial losses, we introduce edge loss, Dice loss, and cross-entropy loss, subsequently merging them with appropriate weighting. Extensive experiments on the ISPRS Potsdam and LoveDA datasets underscore SSCNet’s superior performance compared with several state-of-the-art methods. Furthermore, an ablation study confirms the efficacy of SpeA.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs15235610
- https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407
- OA Status
- gold
- Cited By
- 38
- References
- 63
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389286635
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389286635Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs15235610Digital Object Identifier
- Title
-
SSCNet: A Spectrum-Space Collaborative Network for Semantic Segmentation of Remote Sensing ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-03Full publication date if available
- Authors
-
Xin Li, Feng Xu, Yong Xi, Deqing Chen, Runliang Xia, Baoliu Ye, Hongmin Gao, Ziqi Chen, Xin LyuList of authors in order
- Landing page
-
https://doi.org/10.3390/rs15235610Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407Direct OA link when available
- Concepts
-
Computer science, Segmentation, Discriminative model, Spectral space, Artificial intelligence, Feature (linguistics), Remote sensing, Context (archaeology), Pattern recognition (psychology), Geography, Mathematics, Pure mathematics, Archaeology, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 22Per-year citation counts (last 5 years)
- References (count)
-
63Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389286635 |
|---|---|
| doi | https://doi.org/10.3390/rs15235610 |
| ids.doi | https://doi.org/10.3390/rs15235610 |
| ids.openalex | https://openalex.org/W4389286635 |
| fwci | 8.25011362 |
| type | article |
| title | SSCNet: A Spectrum-Space Collaborative Network for Semantic Segmentation of Remote Sensing Images |
| awards[0].id | https://openalex.org/G8014003051 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 82004498 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1604899545 |
| awards[1].funder_id | https://openalex.org/F4320335787 |
| awards[1].display_name | |
| awards[1].funder_award_id | B230201007 |
| awards[1].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[2].id | https://openalex.org/G7558124665 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 42104033 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G7032566767 |
| awards[3].funder_id | https://openalex.org/F4320335787 |
| awards[3].display_name | |
| awards[3].funder_award_id | B230204009 |
| awards[3].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[4].id | https://openalex.org/G3455073867 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 42101343 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| awards[5].id | https://openalex.org/G7564844406 |
| awards[5].funder_id | https://openalex.org/F4320335787 |
| awards[5].display_name | |
| awards[5].funder_award_id | B220206006 |
| awards[5].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 23 |
| biblio.volume | 15 |
| biblio.last_page | 5610 |
| biblio.first_page | 5610 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9929999709129333 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7446761131286621 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6222593784332275 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5228174924850464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C2778740170 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48781517148017883 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7575210 |
| concepts[3].display_name | Spectral space |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4864642322063446 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4864477813243866 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C62649853 |
| concepts[6].level | 1 |
| concepts[6].score | 0.44355639815330505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[6].display_name | Remote sensing |
| concepts[7].id | https://openalex.org/C2779343474 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4180717170238495 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[7].display_name | Context (archaeology) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.36381441354751587 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12665578722953796 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10854852199554443 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C166957645 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[12].display_name | Archaeology |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7446761131286621 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6222593784332275 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.5228174924850464 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/spectral-space |
| keywords[3].score | 0.48781517148017883 |
| keywords[3].display_name | Spectral space |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4864642322063446 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4864477813243866 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/remote-sensing |
| keywords[6].score | 0.44355639815330505 |
| keywords[6].display_name | Remote sensing |
| keywords[7].id | https://openalex.org/keywords/context |
| keywords[7].score | 0.4180717170238495 |
| keywords[7].display_name | Context (archaeology) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.36381441354751587 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.12665578722953796 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.10854852199554443 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/rs15235610 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs15235610 |
| locations[1].id | pmh:oai:doaj.org/article:7288556bc7d64c9fad1c6fdca64f803c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 15, Iss 23, p 5610 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/7288556bc7d64c9fad1c6fdca64f803c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5060642323 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0576-3181 |
| authorships[0].author.display_name | Xin Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[0].institutions[0].id | https://openalex.org/I163340411 |
| authorships[0].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hohai University |
| authorships[0].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[0].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xin Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[1].author.id | https://openalex.org/A5005047757 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2175-9943 |
| authorships[1].author.display_name | Feng Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Engineering, Jiangsu Ocean University, Lianyungang 222005, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I163340411 |
| authorships[1].affiliations[2].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[1].institutions[0].id | https://openalex.org/I163340411 |
| authorships[1].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hohai University |
| authorships[1].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[1].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Feng Xu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China, School of Computer Engineering, Jiangsu Ocean University, Lianyungang 222005, China |
| authorships[2].author.id | https://openalex.org/A5100296831 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yong Xi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210155611 |
| authorships[2].affiliations[0].raw_affiliation_string | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210155611 |
| authorships[2].institutions[0].ror | https://ror.org/04e698d63 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210155611 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xi Yong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[3].author.id | https://openalex.org/A5058248308 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6827-2120 |
| authorships[3].author.display_name | Deqing Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210155611 |
| authorships[3].affiliations[0].raw_affiliation_string | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210155611 |
| authorships[3].institutions[0].ror | https://ror.org/04e698d63 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210155611 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Deqing Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[4].author.id | https://openalex.org/A5001587479 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6957-8546 |
| authorships[4].author.display_name | Runliang Xia |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210155611 |
| authorships[4].affiliations[0].raw_affiliation_string | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210155611 |
| authorships[4].institutions[0].ror | https://ror.org/04e698d63 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210155611 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Runliang Xia |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Information Center, Ministry of Water Resources, Beijing 100053, China |
| authorships[5].author.id | https://openalex.org/A5087746903 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1065-449X |
| authorships[5].author.display_name | Baoliu Ye |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[5].affiliations[1].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[5].institutions[0].id | https://openalex.org/I163340411 |
| authorships[5].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hohai University |
| authorships[5].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[5].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Baoliu Ye |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[6].author.id | https://openalex.org/A5044826967 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8404-2464 |
| authorships[6].author.display_name | Hongmin Gao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I163340411 |
| authorships[6].affiliations[1].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[6].institutions[0].id | https://openalex.org/I163340411 |
| authorships[6].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Hohai University |
| authorships[6].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[6].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[6].institutions[1].type | government |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hongmin Gao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[7].author.id | https://openalex.org/A5100715927 |
| authorships[7].author.orcid | https://orcid.org/0009-0005-8730-0659 |
| authorships[7].author.display_name | Ziqi Chen |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Earth System Science, Tsinghua University, Beijing 100084, China |
| authorships[7].institutions[0].id | https://openalex.org/I99065089 |
| authorships[7].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Tsinghua University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ziqi Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Earth System Science, Tsinghua University, Beijing 100084, China |
| authorships[8].author.id | https://openalex.org/A5071995587 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-1862-2070 |
| authorships[8].author.display_name | Xin Lyu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| authorships[8].affiliations[0].raw_affiliation_string | Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I163340411 |
| authorships[8].affiliations[1].raw_affiliation_string | College of Computer and Information, Hohai University, Nanjing 211100, China |
| authorships[8].institutions[0].id | https://openalex.org/I163340411 |
| authorships[8].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Hohai University |
| authorships[8].institutions[1].id | https://openalex.org/I4210155611 |
| authorships[8].institutions[1].ror | https://ror.org/04e698d63 |
| authorships[8].institutions[1].type | government |
| authorships[8].institutions[1].lineage | https://openalex.org/I4210155611 |
| authorships[8].institutions[1].country_code | CN |
| authorships[8].institutions[1].display_name | Ministry of Water Resources of the People's Republic of China |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Xin Lyu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | College of Computer and Information, Hohai University, Nanjing 211100, China, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SSCNet: A Spectrum-Space Collaborative Network for Semantic Segmentation of Remote Sensing Images |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2965546495, https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W2110523656, https://openalex.org/W1482209366, https://openalex.org/W2521627374 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 22 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/rs15235610 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs15235610 |
| primary_location.id | doi:10.3390/rs15235610 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/15/23/5610/pdf?version=1701588407 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs15235610 |
| publication_date | 2023-12-03 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4385729233, https://openalex.org/W4220888320, https://openalex.org/W2926582353, https://openalex.org/W4210788561, https://openalex.org/W4313438466, https://openalex.org/W4214763222, https://openalex.org/W4293661115, https://openalex.org/W6838417955, https://openalex.org/W4283716178, https://openalex.org/W4281623164, https://openalex.org/W3110908156, https://openalex.org/W2061333400, https://openalex.org/W3148302677, https://openalex.org/W2945366039, https://openalex.org/W2899101283, https://openalex.org/W2648242067, https://openalex.org/W2908753233, https://openalex.org/W3168997536, https://openalex.org/W6803251020, https://openalex.org/W4306967787, https://openalex.org/W3004732939, https://openalex.org/W6847611155, https://openalex.org/W4220706270, https://openalex.org/W3011248632, https://openalex.org/W3160596558, https://openalex.org/W3212386989, https://openalex.org/W4362519158, https://openalex.org/W3040304705, https://openalex.org/W3130455691, https://openalex.org/W6798387234, https://openalex.org/W3189528951, https://openalex.org/W4200386693, https://openalex.org/W3103092912, https://openalex.org/W6848518076, https://openalex.org/W4225630686, https://openalex.org/W4205779174, https://openalex.org/W4205899747, https://openalex.org/W4289944387, https://openalex.org/W4313117039, https://openalex.org/W3007268491, https://openalex.org/W4312127515, https://openalex.org/W4381243125, https://openalex.org/W4290981008, https://openalex.org/W6805641521, https://openalex.org/W4214532801, https://openalex.org/W4285301526, https://openalex.org/W6850084082, https://openalex.org/W4389104855, https://openalex.org/W6754427640, https://openalex.org/W6757137860, https://openalex.org/W3034771037, https://openalex.org/W4214666412, https://openalex.org/W1901129140, https://openalex.org/W2412782625, https://openalex.org/W2884585870, https://openalex.org/W2995766874, https://openalex.org/W4205365435, https://openalex.org/W4320018395, https://openalex.org/W4313555782, https://openalex.org/W4253826570, https://openalex.org/W4282967568, https://openalex.org/W3183174367, https://openalex.org/W4312868071 |
| referenced_works_count | 63 |
| abstract_inverted_index.a | 3, 91 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.To | 157 |
| abstract_inverted_index.an | 199 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 6, 29, 85, 153 |
| abstract_inverted_index.is | 69 |
| abstract_inverted_index.it | 40 |
| abstract_inverted_index.of | 10, 38, 48, 82, 108, 115, 143, 149, 205 |
| abstract_inverted_index.on | 20, 182 |
| abstract_inverted_index.to | 43, 71, 118 |
| abstract_inverted_index.we | 61, 111, 130, 165 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.and | 75, 103, 121, 146, 162, 171, 186 |
| abstract_inverted_index.the | 7, 24, 34, 45, 63, 80, 113, 132, 137, 144, 154, 183, 203 |
| abstract_inverted_index.Dice | 169 |
| abstract_inverted_index.both | 73, 160 |
| abstract_inverted_index.edge | 167 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.maps | 117, 152 |
| abstract_inverted_index.real | 145 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 97 |
| abstract_inverted_index.them | 176 |
| abstract_inverted_index.this | 59 |
| abstract_inverted_index.with | 177, 194 |
| abstract_inverted_index.Given | 33 |
| abstract_inverted_index.ISPRS | 184 |
| abstract_inverted_index.RSIs, | 39 |
| abstract_inverted_index.RSIs. | 86 |
| abstract_inverted_index.SpeA, | 129 |
| abstract_inverted_index.SpeA. | 206 |
| abstract_inverted_index.focus | 19 |
| abstract_inverted_index.joint | 92 |
| abstract_inverted_index.loss, | 168, 170, 173 |
| abstract_inverted_index.often | 27 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.study | 201 |
| abstract_inverted_index.their | 125 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.using | 136 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.(CSED) | 142 |
| abstract_inverted_index.(JSSA) | 96 |
| abstract_inverted_index.(SpeA) | 102 |
| abstract_inverted_index.LoveDA | 187 |
| abstract_inverted_index.Within | 128 |
| abstract_inverted_index.fusion | 114 |
| abstract_inverted_index.gather | 119 |
| abstract_inverted_index.images | 13 |
| abstract_inverted_index.module | 95 |
| abstract_inverted_index.paper, | 60 |
| abstract_inverted_index.remote | 11 |
| abstract_inverted_index.within | 23 |
| abstract_inverted_index.(RSIs). | 14 |
| abstract_inverted_index.(SpaA). | 106 |
| abstract_inverted_index.Instead | 107 |
| abstract_inverted_index.Potsdam | 185 |
| abstract_inverted_index.becomes | 41 |
| abstract_inverted_index.capture | 72 |
| abstract_inverted_index.complex | 138 |
| abstract_inverted_index.context | 54 |
| abstract_inverted_index.domain, | 26 |
| abstract_inverted_index.domain. | 156 |
| abstract_inverted_index.employs | 99 |
| abstract_inverted_index.enhance | 44 |
| abstract_inverted_index.feature | 151 |
| abstract_inverted_index.losses, | 164 |
| abstract_inverted_index.merging | 175 |
| abstract_inverted_index.methods | 17 |
| abstract_inverted_index.network | 66 |
| abstract_inverted_index.pivotal | 4 |
| abstract_inverted_index.propose | 112 |
| abstract_inverted_index.quality | 81 |
| abstract_inverted_index.sensing | 12 |
| abstract_inverted_index.several | 195 |
| abstract_inverted_index.spatial | 25, 56, 76, 104, 122, 163 |
| abstract_inverted_index.thereby | 78 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.Semantic | 0 |
| abstract_inverted_index.ablation | 200 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.compared | 193 |
| abstract_inverted_index.confirms | 202 |
| abstract_inverted_index.contexts | 123 |
| abstract_inverted_index.datasets | 188 |
| abstract_inverted_index.designed | 70 |
| abstract_inverted_index.distance | 141 |
| abstract_inverted_index.efficacy | 204 |
| abstract_inverted_index.features | 90 |
| abstract_inverted_index.learning | 21 |
| abstract_inverted_index.methods. | 197 |
| abstract_inverted_index.semantic | 83 |
| abstract_inverted_index.spectral | 36, 53, 74, 100, 120, 134, 139, 161 |
| abstract_inverted_index.superior | 191 |
| abstract_inverted_index.(SSCNet), | 67 |
| abstract_inverted_index.Euclidean | 140 |
| abstract_inverted_index.Extensive | 180 |
| abstract_inverted_index.alongside | 55 |
| abstract_inverted_index.attention | 94, 101, 105, 116 |
| abstract_inverted_index.branches. | 127 |
| abstract_inverted_index.calculate | 131, 159 |
| abstract_inverted_index.elevating | 79 |
| abstract_inverted_index.frequency | 155 |
| abstract_inverted_index.imaginary | 147 |
| abstract_inverted_index.intrinsic | 35 |
| abstract_inverted_index.introduce | 62, 166 |
| abstract_inverted_index.potential | 47 |
| abstract_inverted_index.projected | 150 |
| abstract_inverted_index.resulting | 28 |
| abstract_inverted_index.SSCNet’s | 190 |
| abstract_inverted_index.components | 148 |
| abstract_inverted_index.imperative | 42 |
| abstract_inverted_index.innovative | 88 |
| abstract_inverted_index.respective | 126 |
| abstract_inverted_index.similarity | 135 |
| abstract_inverted_index.suboptimal | 30 |
| abstract_inverted_index.underscore | 189 |
| abstract_inverted_index.weighting. | 179 |
| abstract_inverted_index.appropriate | 178 |
| abstract_inverted_index.experiments | 181 |
| abstract_inverted_index.integrating | 52 |
| abstract_inverted_index.intelligent | 8 |
| abstract_inverted_index.performance | 192 |
| abstract_inverted_index.Furthermore, | 198 |
| abstract_inverted_index.aggregation, | 110 |
| abstract_inverted_index.concurrently | 98 |
| abstract_inverted_index.conventional | 16 |
| abstract_inverted_index.information. | 57 |
| abstract_inverted_index.segmentation | 1, 84 |
| abstract_inverted_index.subsequently | 174 |
| abstract_inverted_index.capabilities. | 32 |
| abstract_inverted_index.collaborative | 65 |
| abstract_inverted_index.cross-entropy | 172 |
| abstract_inverted_index.dependencies, | 77 |
| abstract_inverted_index.feature-level | 109 |
| abstract_inverted_index.position-wise | 133 |
| abstract_inverted_index.predominantly | 18 |
| abstract_inverted_index.discriminative | 31, 46 |
| abstract_inverted_index.interpretation | 9 |
| abstract_inverted_index.spectrum-space | 64 |
| abstract_inverted_index.characteristics | 37 |
| abstract_inverted_index.comprehensively | 158 |
| abstract_inverted_index.representations | 22, 50 |
| abstract_inverted_index.state-of-the-art | 196 |
| abstract_inverted_index.spectral–spatial | 93 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5005047757 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I163340411, https://openalex.org/I4210155611 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.97409964 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |