SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-023-36311-0
Diabetic retinopathy (DR) is a diabetes complication that can cause vision loss among patients due to damage to blood vessels in the retina. Early retinal screening can avoid the severe consequences of DR and enable timely treatment. Nowadays, researchers are trying to develop automated deep learning-based DR segmentation tools using retinal fundus images to help Ophthalmologists with DR screening and early diagnosis. However, recent studies are unable to design accurate models due to the unavailability of larger training data with consistent and fine-grained annotations. To address this problem, we propose a semi-supervised multitask learning approach that exploits widely available unlabelled data (i.e., Kaggle-EyePACS) to improve DR segmentation performance. The proposed model consists of novel multi-decoder architecture and involves both unsupervised and supervised learning phases. The model is trained for the unsupervised auxiliary task to effectively learn from additional unlabelled data and improve the performance of the primary task of DR segmentation. The proposed technique is rigorously evaluated on two publicly available datasets (i.e., FGADR and IDRiD) and results show that the proposed technique not only outperforms existing state-of-the-art techniques but also exhibits improved generalisation and robustness for cross-data evaluation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-023-36311-0
- https://www.nature.com/articles/s41598-023-36311-0.pdf
- OA Status
- gold
- Cited By
- 32
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379384705
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379384705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-023-36311-0Digital Object Identifier
- Title
-
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-05Full publication date if available
- Authors
-
Zahid Ullah, Muhammad Usman, Siddique Latif, Asifullah Khan, Jeonghwan GwakList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-023-36311-0Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-023-36311-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-023-36311-0.pdfDirect OA link when available
- Concepts
-
Diabetic retinopathy, Computer science, Task (project management), Segmentation, Artificial intelligence, Machine learning, Medicine, Diabetes mellitus, Endocrinology, Economics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
32Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 18, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379384705 |
|---|---|
| doi | https://doi.org/10.1038/s41598-023-36311-0 |
| ids.doi | https://doi.org/10.1038/s41598-023-36311-0 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37277554 |
| ids.openalex | https://openalex.org/W4379384705 |
| fwci | 9.88975889 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D003930 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Diabetic Retinopathy |
| mesh[2].qualifier_ui | Q000000981 |
| mesh[2].descriptor_ui | D012160 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | diagnostic imaging |
| mesh[2].descriptor_name | Retina |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005654 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Fundus Oculi |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069553 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Supervised Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000072163 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Ophthalmologists |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D003920 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Diabetes Mellitus |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000000981 |
| mesh[8].descriptor_ui | D003930 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | diagnostic imaging |
| mesh[8].descriptor_name | Diabetic Retinopathy |
| mesh[9].qualifier_ui | Q000000981 |
| mesh[9].descriptor_ui | D012160 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | diagnostic imaging |
| mesh[9].descriptor_name | Retina |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D005654 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Fundus Oculi |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069553 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Supervised Machine Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000072163 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Ophthalmologists |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D003920 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Diabetes Mellitus |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | Q000000981 |
| mesh[15].descriptor_ui | D003930 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | diagnostic imaging |
| mesh[15].descriptor_name | Diabetic Retinopathy |
| mesh[16].qualifier_ui | Q000000981 |
| mesh[16].descriptor_ui | D012160 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | diagnostic imaging |
| mesh[16].descriptor_name | Retina |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D005654 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Fundus Oculi |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000069553 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Supervised Machine Learning |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000072163 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Ophthalmologists |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D003920 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Diabetes Mellitus |
| type | article |
| title | SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation |
| awards[0].id | https://openalex.org/G3841680401 |
| awards[0].funder_id | https://openalex.org/F4320322120 |
| awards[0].display_name | |
| awards[0].funder_award_id | NRF-2020R1I1A3074141 |
| awards[0].funder_display_name | National Research Foundation of Korea |
| awards[1].id | https://openalex.org/G4376151955 |
| awards[1].funder_id | https://openalex.org/F4320322120 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2021RIS-001(1345341783) |
| awards[1].funder_display_name | National Research Foundation of Korea |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 9087 |
| biblio.first_page | 9087 |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9884999990463257 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320322120 |
| funders[0].ror | https://ror.org/013aysd81 |
| funders[0].display_name | National Research Foundation of Korea |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C2779829184 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8126397132873535 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q631361 |
| concepts[0].display_name | Diabetic retinopathy |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7261577248573303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.66070556640625 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5010623931884766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4534097909927368 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.389139324426651 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3255293369293213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| concepts[7].id | https://openalex.org/C555293320 |
| concepts[7].level | 2 |
| concepts[7].score | 0.2971908152103424 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[7].display_name | Diabetes mellitus |
| concepts[8].id | https://openalex.org/C134018914 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0664646327495575 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[8].display_name | Endocrinology |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| concepts[10].id | https://openalex.org/C187736073 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[10].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/diabetic-retinopathy |
| keywords[0].score | 0.8126397132873535 |
| keywords[0].display_name | Diabetic retinopathy |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7261577248573303 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.66070556640625 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.5010623931884766 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4534097909927368 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.389139324426651 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.3255293369293213 |
| keywords[6].display_name | Medicine |
| keywords[7].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[7].score | 0.2971908152103424 |
| keywords[7].display_name | Diabetes mellitus |
| keywords[8].id | https://openalex.org/keywords/endocrinology |
| keywords[8].score | 0.0664646327495575 |
| keywords[8].display_name | Endocrinology |
| language | en |
| locations[0].id | doi:10.1038/s41598-023-36311-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-023-36311-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-023-36311-0 |
| locations[1].id | pmid:37277554 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37277554 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10240139 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10240139/pdf/41598_2023_Article_36311.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sci Rep |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10240139 |
| locations[3].id | pmh:oai:doaj.org/article:ff536066ff9640f4b88eebcb53e8f7ca |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Scientific Reports, Vol 13, Iss 1, Pp 1-16 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/ff536066ff9640f4b88eebcb53e8f7ca |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101859051 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0184-7620 |
| authorships[0].author.display_name | Zahid Ullah |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119575151 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea |
| authorships[0].institutions[0].id | https://openalex.org/I119575151 |
| authorships[0].institutions[0].ror | https://ror.org/03qqbe534 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119575151 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Korea National University of Transportation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zahid Ullah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Software, Korea National University of Transportation, Chungju, 27469, South Korea |
| authorships[1].author.id | https://openalex.org/A5065073249 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7278-8488 |
| authorships[1].author.display_name | Muhammad Usman |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139264467 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, South Korea |
| authorships[1].institutions[0].id | https://openalex.org/I139264467 |
| authorships[1].institutions[0].ror | https://ror.org/04h9pn542 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139264467 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Seoul National University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Muhammad Usman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, South Korea |
| authorships[2].author.id | https://openalex.org/A5047197696 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5662-4777 |
| authorships[2].author.display_name | Siddique Latif |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Health and Computing, University of Southern Queensland, Toowoomba, QL, 4300, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I185523456 |
| authorships[2].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Southern Queensland |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siddique Latif |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Health and Computing, University of Southern Queensland, Toowoomba, QL, 4300, Australia |
| authorships[3].author.id | https://openalex.org/A5083112369 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2039-5305 |
| authorships[3].author.display_name | Asifullah Khan |
| authorships[3].countries | PK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I134276161 |
| authorships[3].affiliations[0].raw_affiliation_string | Pattern Recognition Lab, DCIS, PIEAS, Nilore, Islamabad, 45650, Pakistan |
| authorships[3].institutions[0].id | https://openalex.org/I134276161 |
| authorships[3].institutions[0].ror | https://ror.org/04d4mbk19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I134276161 |
| authorships[3].institutions[0].country_code | PK |
| authorships[3].institutions[0].display_name | Pakistan Institute of Engineering and Applied Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Asifullah Khan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pattern Recognition Lab, DCIS, PIEAS, Nilore, Islamabad, 45650, Pakistan |
| authorships[4].author.id | https://openalex.org/A5003627780 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6237-0141 |
| authorships[4].author.display_name | Jeonghwan Gwak |
| authorships[4].countries | KR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I119575151 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, South Korea |
| authorships[4].institutions[0].id | https://openalex.org/I119575151 |
| authorships[4].institutions[0].ror | https://ror.org/03qqbe534 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I119575151 |
| authorships[4].institutions[0].country_code | KR |
| authorships[4].institutions[0].display_name | Korea National University of Transportation |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jeonghwan Gwak |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, South Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-023-36311-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4313488044, https://openalex.org/W3209574120, https://openalex.org/W4312192474, https://openalex.org/W4210805261 |
| cited_by_count | 32 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 18 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-023-36311-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-023-36311-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-023-36311-0 |
| primary_location.id | doi:10.1038/s41598-023-36311-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-023-36311-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-023-36311-0 |
| publication_date | 2023-06-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1817006636, https://openalex.org/W2952436003, https://openalex.org/W3058910814, https://openalex.org/W3184672723, https://openalex.org/W3112175976, https://openalex.org/W2828862258, https://openalex.org/W2977650145, https://openalex.org/W2966042060, https://openalex.org/W3106109276, https://openalex.org/W2043492194, https://openalex.org/W2114063873, https://openalex.org/W1982168774, https://openalex.org/W2910121883, https://openalex.org/W3199964822, https://openalex.org/W2892091703, https://openalex.org/W2194775991, https://openalex.org/W1982890488, https://openalex.org/W2792618444, https://openalex.org/W2749049648, https://openalex.org/W2939250925, https://openalex.org/W4318219815, https://openalex.org/W1091878006, https://openalex.org/W4315476857, https://openalex.org/W4292162382, https://openalex.org/W3198425465, https://openalex.org/W2884436604, https://openalex.org/W3081752372, https://openalex.org/W3107634219, https://openalex.org/W4205213185, https://openalex.org/W2948685905, https://openalex.org/W2913340405, https://openalex.org/W3142788400, https://openalex.org/W2072130234, https://openalex.org/W2150769593, https://openalex.org/W2145305441, https://openalex.org/W2923062287, https://openalex.org/W2978017498, https://openalex.org/W3089025284, https://openalex.org/W1972027273, https://openalex.org/W1901129140, https://openalex.org/W2017257315, https://openalex.org/W2732063980, https://openalex.org/W1903029394, https://openalex.org/W2964309882, https://openalex.org/W3213811005, https://openalex.org/W2888358068, https://openalex.org/W2964227007, https://openalex.org/W2962812574, https://openalex.org/W3118722993, https://openalex.org/W2979786151, https://openalex.org/W4226078923, https://openalex.org/W3100321043, https://openalex.org/W4226071827, https://openalex.org/W4205718468, https://openalex.org/W4205324465, https://openalex.org/W3003864320, https://openalex.org/W2395611524, https://openalex.org/W4220669345, https://openalex.org/W3098558149 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 5, 91 |
| abstract_inverted_index.DR | 33, 47, 58, 106, 150 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.in | 21 |
| abstract_inverted_index.is | 4, 127, 155 |
| abstract_inverted_index.of | 32, 76, 113, 145, 149 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.to | 16, 18, 42, 54, 68, 73, 104, 134 |
| abstract_inverted_index.we | 89 |
| abstract_inverted_index.The | 109, 125, 152 |
| abstract_inverted_index.and | 34, 60, 82, 117, 121, 141, 165, 167, 185 |
| abstract_inverted_index.are | 40, 66 |
| abstract_inverted_index.but | 180 |
| abstract_inverted_index.can | 9, 27 |
| abstract_inverted_index.due | 15, 72 |
| abstract_inverted_index.for | 129, 187 |
| abstract_inverted_index.not | 174 |
| abstract_inverted_index.the | 22, 29, 74, 130, 143, 146, 171 |
| abstract_inverted_index.two | 159 |
| abstract_inverted_index.(DR) | 3 |
| abstract_inverted_index.also | 181 |
| abstract_inverted_index.both | 119 |
| abstract_inverted_index.data | 79, 101, 140 |
| abstract_inverted_index.deep | 45 |
| abstract_inverted_index.from | 137 |
| abstract_inverted_index.help | 55 |
| abstract_inverted_index.loss | 12 |
| abstract_inverted_index.only | 175 |
| abstract_inverted_index.show | 169 |
| abstract_inverted_index.task | 133, 148 |
| abstract_inverted_index.that | 8, 96, 170 |
| abstract_inverted_index.this | 87 |
| abstract_inverted_index.with | 57, 80 |
| abstract_inverted_index.Early | 24 |
| abstract_inverted_index.FGADR | 164 |
| abstract_inverted_index.among | 13 |
| abstract_inverted_index.avoid | 28 |
| abstract_inverted_index.blood | 19 |
| abstract_inverted_index.cause | 10 |
| abstract_inverted_index.early | 61 |
| abstract_inverted_index.learn | 136 |
| abstract_inverted_index.model | 111, 126 |
| abstract_inverted_index.novel | 114 |
| abstract_inverted_index.tools | 49 |
| abstract_inverted_index.using | 50 |
| abstract_inverted_index.(i.e., | 102, 163 |
| abstract_inverted_index.IDRiD) | 166 |
| abstract_inverted_index.damage | 17 |
| abstract_inverted_index.design | 69 |
| abstract_inverted_index.enable | 35 |
| abstract_inverted_index.fundus | 52 |
| abstract_inverted_index.images | 53 |
| abstract_inverted_index.larger | 77 |
| abstract_inverted_index.models | 71 |
| abstract_inverted_index.recent | 64 |
| abstract_inverted_index.severe | 30 |
| abstract_inverted_index.timely | 36 |
| abstract_inverted_index.trying | 41 |
| abstract_inverted_index.unable | 67 |
| abstract_inverted_index.vision | 11 |
| abstract_inverted_index.widely | 98 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.develop | 43 |
| abstract_inverted_index.improve | 105, 142 |
| abstract_inverted_index.phases. | 124 |
| abstract_inverted_index.primary | 147 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.retina. | 23 |
| abstract_inverted_index.retinal | 25, 51 |
| abstract_inverted_index.studies | 65 |
| abstract_inverted_index.trained | 128 |
| abstract_inverted_index.vessels | 20 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Diabetic | 1 |
| abstract_inverted_index.However, | 63 |
| abstract_inverted_index.accurate | 70 |
| abstract_inverted_index.approach | 95 |
| abstract_inverted_index.consists | 112 |
| abstract_inverted_index.datasets | 162 |
| abstract_inverted_index.diabetes | 6 |
| abstract_inverted_index.exhibits | 182 |
| abstract_inverted_index.existing | 177 |
| abstract_inverted_index.exploits | 97 |
| abstract_inverted_index.improved | 183 |
| abstract_inverted_index.involves | 118 |
| abstract_inverted_index.learning | 94, 123 |
| abstract_inverted_index.patients | 14 |
| abstract_inverted_index.problem, | 88 |
| abstract_inverted_index.proposed | 110, 153, 172 |
| abstract_inverted_index.publicly | 160 |
| abstract_inverted_index.training | 78 |
| abstract_inverted_index.Nowadays, | 38 |
| abstract_inverted_index.automated | 44 |
| abstract_inverted_index.auxiliary | 132 |
| abstract_inverted_index.available | 99, 161 |
| abstract_inverted_index.evaluated | 157 |
| abstract_inverted_index.multitask | 93 |
| abstract_inverted_index.screening | 26, 59 |
| abstract_inverted_index.technique | 154, 173 |
| abstract_inverted_index.additional | 138 |
| abstract_inverted_index.consistent | 81 |
| abstract_inverted_index.cross-data | 188 |
| abstract_inverted_index.diagnosis. | 62 |
| abstract_inverted_index.rigorously | 156 |
| abstract_inverted_index.robustness | 186 |
| abstract_inverted_index.supervised | 122 |
| abstract_inverted_index.techniques | 179 |
| abstract_inverted_index.treatment. | 37 |
| abstract_inverted_index.unlabelled | 100, 139 |
| abstract_inverted_index.effectively | 135 |
| abstract_inverted_index.evaluation. | 189 |
| abstract_inverted_index.outperforms | 176 |
| abstract_inverted_index.performance | 144 |
| abstract_inverted_index.researchers | 39 |
| abstract_inverted_index.retinopathy | 2 |
| abstract_inverted_index.annotations. | 84 |
| abstract_inverted_index.architecture | 116 |
| abstract_inverted_index.complication | 7 |
| abstract_inverted_index.consequences | 31 |
| abstract_inverted_index.fine-grained | 83 |
| abstract_inverted_index.performance. | 108 |
| abstract_inverted_index.segmentation | 48, 107 |
| abstract_inverted_index.unsupervised | 120, 131 |
| abstract_inverted_index.multi-decoder | 115 |
| abstract_inverted_index.segmentation. | 151 |
| abstract_inverted_index.generalisation | 184 |
| abstract_inverted_index.learning-based | 46 |
| abstract_inverted_index.unavailability | 75 |
| abstract_inverted_index.Kaggle-EyePACS) | 103 |
| abstract_inverted_index.semi-supervised | 92 |
| abstract_inverted_index.Ophthalmologists | 56 |
| abstract_inverted_index.state-of-the-art | 178 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5003627780 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I119575151 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.98239998 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |