ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/nargab/lqaf109
Single-cell RNA sequencing (scRNA-seq) has significantly deepened our understanding of cellular heterogeneity and cell type interactions, providing insights into how cell populations adapt to environmental variability. However, its lack of spatial context limits intercellular analysis. Similarly, existing spatial transcriptomics (ST) data often lack single-cell resolution, restricting cellular mapping. To address these limitations, we introduce ST-deconv, a deep learning-based deconvolution model that integrates spatial information. ST-deconv leverages contrastive learning to enhance the spatial representation of adjacent spots, improving spatial relationship inference. It also employs domain-adversarial networks to improve generalization and deconvolution across diverse datasets. Moreover, ST-deconv can generate large-scale, high-resolution spatial transcriptomic data with cell type labels from single-cell input, facilitating the learning of spatial cell type composition. In benchmarking experiments, ST-deconv outperforms traditional methods, reducing the root mean square error (RMSE) by 13% to 60%, with an RMSE as low as 0.03 for high spatial correlation datasets and 0.07 for low spatial correlation datasets across different transcriptomic contexts. Reconstructing real tissue structure, a purity of 0.68 on mouse olfactory bulb (MOB) and a cell type correlation of 0.76 on human pancreatic ductal adenocarcinoma (PDAC) were achieved. These advancements make ST-deconv a powerful tool for enhancing spatial transcriptomics and downstream analyses of intercellular interactions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/nargab/lqaf109
- OA Status
- gold
- Cited By
- 1
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413768544
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413768544Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/nargab/lqaf109Digital Object Identifier
- Title
-
ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-04Full publication date if available
- Authors
-
Shurui Dai, Jiawei Li, Zhiliang Xia, Jingfeng Ou, Yan Guo, Limin Jiang, Jijun TangList of authors in order
- Landing page
-
https://doi.org/10.1093/nargab/lqaf109Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/nargab/lqaf109Direct OA link when available
- Concepts
-
Deconvolution, Encoding (memory), Computer science, Transcriptome, Artificial intelligence, Pattern recognition (psychology), Algorithm, Biology, Gene, Genetics, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413768544 |
|---|---|
| doi | https://doi.org/10.1093/nargab/lqaf109 |
| ids.doi | https://doi.org/10.1093/nargab/lqaf109 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40896262 |
| ids.openalex | https://openalex.org/W4413768544 |
| fwci | 2.68294463 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000818 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Animals |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D059467 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Transcriptome |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D059010 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Single-Cell Analysis |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000077321 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Deep Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D051379 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Mice |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D020869 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Gene Expression Profiling |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000081246 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | RNA-Seq |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000818 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Animals |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D059467 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Transcriptome |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D059010 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Single-Cell Analysis |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000077321 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Deep Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D051379 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Mice |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D020869 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Gene Expression Profiling |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000081246 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | RNA-Seq |
| type | article |
| title | ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning |
| awards[0].id | https://openalex.org/G172909790 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | NSFC U24A20257 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4076804852 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2020YFA0908400 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G1558580378 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | NSFC 62172296 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 3 |
| biblio.volume | 7 |
| biblio.last_page | lqaf109 |
| biblio.first_page | lqaf109 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9743000268936157 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T10981 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9613000154495239 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Cytomegalovirus and herpesvirus research |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2473 |
| apc_list.currency | USD |
| apc_list.value_usd | 2473 |
| apc_paid.value | 2473 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2473 |
| concepts[0].id | https://openalex.org/C174576160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7797766923904419 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[0].display_name | Deconvolution |
| concepts[1].id | https://openalex.org/C125411270 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7670090198516846 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[1].display_name | Encoding (memory) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6692928075790405 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C162317418 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6523891687393188 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[3].display_name | Transcriptome |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44472774863243103 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.36219537258148193 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.16566413640975952 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.14496341347694397 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09268590807914734 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C54355233 |
| concepts[9].level | 1 |
| concepts[9].score | 0.08739012479782104 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[9].display_name | Genetics |
| concepts[10].id | https://openalex.org/C150194340 |
| concepts[10].level | 3 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[10].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/deconvolution |
| keywords[0].score | 0.7797766923904419 |
| keywords[0].display_name | Deconvolution |
| keywords[1].id | https://openalex.org/keywords/encoding |
| keywords[1].score | 0.7670090198516846 |
| keywords[1].display_name | Encoding (memory) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6692928075790405 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/transcriptome |
| keywords[3].score | 0.6523891687393188 |
| keywords[3].display_name | Transcriptome |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.44472774863243103 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.36219537258148193 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.16566413640975952 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.14496341347694397 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/gene |
| keywords[8].score | 0.09268590807914734 |
| keywords[8].display_name | Gene |
| keywords[9].id | https://openalex.org/keywords/genetics |
| keywords[9].score | 0.08739012479782104 |
| keywords[9].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1093/nargab/lqaf109 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210241000 |
| locations[0].source.issn | 2631-9268 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2631-9268 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | NAR Genomics and Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | NAR Genomics and Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/nargab/lqaf109 |
| locations[1].id | pmid:40896262 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | NAR genomics and bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40896262 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101298482 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shurui Dai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[0].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shurui Dai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[1].author.id | https://openalex.org/A5108050280 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9957-8192 |
| authorships[1].author.display_name | Jiawei Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[1].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiawei Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[2].author.id | https://openalex.org/A5114928698 |
| authorships[2].author.orcid | https://orcid.org/0009-0008-6567-0730 |
| authorships[2].author.display_name | Zhiliang Xia |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[2].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhiliang Xia |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[3].author.id | https://openalex.org/A5104236400 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-4181-1136 |
| authorships[3].author.display_name | Jingfeng Ou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[3].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[3].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingfeng Ou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[4].author.id | https://openalex.org/A5056796466 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5252-3960 |
| authorships[4].author.display_name | Yan Guo |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Miami Department of Public Health Sciences, , Miami, FL 33136 , |
| authorships[4].institutions[0].id | https://openalex.org/I145608581 |
| authorships[4].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Miami |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yan Guo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Miami Department of Public Health Sciences, , Miami, FL 33136 , |
| authorships[5].author.id | https://openalex.org/A5089549770 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4320-3698 |
| authorships[5].author.display_name | Limin Jiang |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145608581 |
| authorships[5].affiliations[0].raw_affiliation_string | University of Miami Department of Public Health Sciences, , Miami, FL 33136 , |
| authorships[5].institutions[0].id | https://openalex.org/I145608581 |
| authorships[5].institutions[0].ror | https://ror.org/02dgjyy92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I145608581 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Miami |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Limin Jiang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of Miami Department of Public Health Sciences, , Miami, FL 33136 , |
| authorships[6].author.id | https://openalex.org/A5001619694 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6377-536X |
| authorships[6].author.display_name | Jijun Tang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[6].affiliations[0].raw_affiliation_string | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| authorships[6].institutions[0].id | https://openalex.org/I19820366 |
| authorships[6].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210145761 |
| authorships[6].institutions[1].ror | https://ror.org/04gh4er46 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Shenzhen Institutes of Advanced Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jijun Tang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences , 518005 Guangdong , |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/nargab/lqaf109 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W4250106855, https://openalex.org/W2037261263, https://openalex.org/W3149087629, https://openalex.org/W4231036715, https://openalex.org/W2032074591, https://openalex.org/W1986156575, https://openalex.org/W3193619106, https://openalex.org/W2751689993, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/nargab/lqaf109 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210241000 |
| best_oa_location.source.issn | 2631-9268 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2631-9268 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | NAR Genomics and Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | NAR Genomics and Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/nargab/lqaf109 |
| primary_location.id | doi:10.1093/nargab/lqaf109 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210241000 |
| primary_location.source.issn | 2631-9268 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2631-9268 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | NAR Genomics and Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | NAR Genomics and Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/nargab/lqaf109 |
| publication_date | 2025-07-04 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2886347923, https://openalex.org/W2923300855, https://openalex.org/W2926010705, https://openalex.org/W3036882247, https://openalex.org/W1977544680, https://openalex.org/W2937443931, https://openalex.org/W4229033508, https://openalex.org/W4388997570, https://openalex.org/W4220765701, https://openalex.org/W3210002151, https://openalex.org/W2953036966, https://openalex.org/W2979301772, https://openalex.org/W2520858613, https://openalex.org/W2972445800, https://openalex.org/W2915848182, https://openalex.org/W3112563877, https://openalex.org/W2471536144, https://openalex.org/W2467355029, https://openalex.org/W4385566390, https://openalex.org/W3134382826, https://openalex.org/W2503542347, https://openalex.org/W3021920958, https://openalex.org/W3190202966, https://openalex.org/W4290154117, https://openalex.org/W3082857452, https://openalex.org/W3096486123, https://openalex.org/W2980870427, https://openalex.org/W4298621008, https://openalex.org/W4281638848, https://openalex.org/W2929810236, https://openalex.org/W4283704002, https://openalex.org/W3165120573, https://openalex.org/W3129476455, https://openalex.org/W3092450854, https://openalex.org/W4205817967, https://openalex.org/W3161009639, https://openalex.org/W4309667063, https://openalex.org/W3127422037, https://openalex.org/W4225272983, https://openalex.org/W4306406844, https://openalex.org/W4322738920, https://openalex.org/W3114632476, https://openalex.org/W2999977864, https://openalex.org/W4221079770, https://openalex.org/W2978329087, https://openalex.org/W1731081199, https://openalex.org/W3035060554, https://openalex.org/W3102363610 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 56, 163, 173, 191 |
| abstract_inverted_index.In | 118 |
| abstract_inverted_index.It | 81 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.an | 137 |
| abstract_inverted_index.as | 139, 141 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.of | 10, 30, 74, 113, 165, 177, 201 |
| abstract_inverted_index.on | 167, 179 |
| abstract_inverted_index.to | 24, 69, 86, 134 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.13% | 133 |
| abstract_inverted_index.RNA | 2 |
| abstract_inverted_index.and | 13, 89, 148, 172, 198 |
| abstract_inverted_index.can | 96 |
| abstract_inverted_index.for | 143, 150, 194 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.how | 20 |
| abstract_inverted_index.its | 28 |
| abstract_inverted_index.low | 140, 151 |
| abstract_inverted_index.our | 8 |
| abstract_inverted_index.the | 71, 111, 126 |
| abstract_inverted_index.(ST) | 40 |
| abstract_inverted_index.0.03 | 142 |
| abstract_inverted_index.0.07 | 149 |
| abstract_inverted_index.0.68 | 166 |
| abstract_inverted_index.0.76 | 178 |
| abstract_inverted_index.60%, | 135 |
| abstract_inverted_index.RMSE | 138 |
| abstract_inverted_index.also | 82 |
| abstract_inverted_index.bulb | 170 |
| abstract_inverted_index.cell | 14, 21, 104, 115, 174 |
| abstract_inverted_index.data | 41, 102 |
| abstract_inverted_index.deep | 57 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.high | 144 |
| abstract_inverted_index.into | 19 |
| abstract_inverted_index.lack | 29, 43 |
| abstract_inverted_index.make | 189 |
| abstract_inverted_index.mean | 128 |
| abstract_inverted_index.real | 160 |
| abstract_inverted_index.root | 127 |
| abstract_inverted_index.that | 61 |
| abstract_inverted_index.tool | 193 |
| abstract_inverted_index.type | 15, 105, 116, 175 |
| abstract_inverted_index.were | 185 |
| abstract_inverted_index.with | 103, 136 |
| abstract_inverted_index.(MOB) | 171 |
| abstract_inverted_index.These | 187 |
| abstract_inverted_index.adapt | 23 |
| abstract_inverted_index.error | 130 |
| abstract_inverted_index.human | 180 |
| abstract_inverted_index.model | 60 |
| abstract_inverted_index.mouse | 168 |
| abstract_inverted_index.often | 42 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.(PDAC) | 184 |
| abstract_inverted_index.(RMSE) | 131 |
| abstract_inverted_index.across | 91, 155 |
| abstract_inverted_index.ductal | 182 |
| abstract_inverted_index.input, | 109 |
| abstract_inverted_index.labels | 106 |
| abstract_inverted_index.limits | 33 |
| abstract_inverted_index.purity | 164 |
| abstract_inverted_index.spots, | 76 |
| abstract_inverted_index.square | 129 |
| abstract_inverted_index.tissue | 161 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.context | 32 |
| abstract_inverted_index.diverse | 92 |
| abstract_inverted_index.employs | 83 |
| abstract_inverted_index.enhance | 70 |
| abstract_inverted_index.improve | 87 |
| abstract_inverted_index.spatial | 31, 38, 63, 72, 78, 100, 114, 145, 152, 196 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.adjacent | 75 |
| abstract_inverted_index.analyses | 200 |
| abstract_inverted_index.cellular | 11, 47 |
| abstract_inverted_index.datasets | 147, 154 |
| abstract_inverted_index.deepened | 7 |
| abstract_inverted_index.existing | 37 |
| abstract_inverted_index.generate | 97 |
| abstract_inverted_index.insights | 18 |
| abstract_inverted_index.learning | 68, 112 |
| abstract_inverted_index.mapping. | 48 |
| abstract_inverted_index.methods, | 124 |
| abstract_inverted_index.networks | 85 |
| abstract_inverted_index.powerful | 192 |
| abstract_inverted_index.reducing | 125 |
| abstract_inverted_index.Moreover, | 94 |
| abstract_inverted_index.ST-deconv | 65, 95, 121, 190 |
| abstract_inverted_index.achieved. | 186 |
| abstract_inverted_index.analysis. | 35 |
| abstract_inverted_index.contexts. | 158 |
| abstract_inverted_index.datasets. | 93 |
| abstract_inverted_index.different | 156 |
| abstract_inverted_index.enhancing | 195 |
| abstract_inverted_index.improving | 77 |
| abstract_inverted_index.introduce | 54 |
| abstract_inverted_index.leverages | 66 |
| abstract_inverted_index.olfactory | 169 |
| abstract_inverted_index.providing | 17 |
| abstract_inverted_index.ST-deconv, | 55 |
| abstract_inverted_index.Similarly, | 36 |
| abstract_inverted_index.downstream | 199 |
| abstract_inverted_index.inference. | 80 |
| abstract_inverted_index.integrates | 62 |
| abstract_inverted_index.pancreatic | 181 |
| abstract_inverted_index.sequencing | 3 |
| abstract_inverted_index.structure, | 162 |
| abstract_inverted_index.(scRNA-seq) | 4 |
| abstract_inverted_index.Single-cell | 1 |
| abstract_inverted_index.contrastive | 67 |
| abstract_inverted_index.correlation | 146, 153, 176 |
| abstract_inverted_index.outperforms | 122 |
| abstract_inverted_index.populations | 22 |
| abstract_inverted_index.resolution, | 45 |
| abstract_inverted_index.restricting | 46 |
| abstract_inverted_index.single-cell | 44, 108 |
| abstract_inverted_index.traditional | 123 |
| abstract_inverted_index.advancements | 188 |
| abstract_inverted_index.benchmarking | 119 |
| abstract_inverted_index.composition. | 117 |
| abstract_inverted_index.experiments, | 120 |
| abstract_inverted_index.facilitating | 110 |
| abstract_inverted_index.information. | 64 |
| abstract_inverted_index.large-scale, | 98 |
| abstract_inverted_index.limitations, | 52 |
| abstract_inverted_index.relationship | 79 |
| abstract_inverted_index.variability. | 26 |
| abstract_inverted_index.deconvolution | 59, 90 |
| abstract_inverted_index.environmental | 25 |
| abstract_inverted_index.heterogeneity | 12 |
| abstract_inverted_index.interactions, | 16 |
| abstract_inverted_index.interactions. | 203 |
| abstract_inverted_index.intercellular | 34, 202 |
| abstract_inverted_index.significantly | 6 |
| abstract_inverted_index.understanding | 9 |
| abstract_inverted_index.Reconstructing | 159 |
| abstract_inverted_index.adenocarcinoma | 183 |
| abstract_inverted_index.generalization | 88 |
| abstract_inverted_index.learning-based | 58 |
| abstract_inverted_index.representation | 73 |
| abstract_inverted_index.transcriptomic | 101, 157 |
| abstract_inverted_index.high-resolution | 99 |
| abstract_inverted_index.transcriptomics | 39, 197 |
| abstract_inverted_index.domain-adversarial | 84 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.84561363 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |