ST-LaneNet: Lane Line Detection Method Based on Swin Transformer and LaneNet Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1186/s10033-024-00992-z
The advancement of autonomous driving heavily relies on the ability to accurate lane lines detection. As deep learning and computer vision technologies evolve, a variety of deep learning-based methods for lane line detection have been proposed by researchers in the field. However, owing to the simple appearance of lane lines and the lack of distinctive features, it is easy for other objects with similar local appearances to interfere with the process of detecting lane lines. The precision of lane line detection is limited by the unpredictable quantity and diversity of lane lines. To address the aforementioned challenges, we propose a novel deep learning approach for lane line detection. This method leverages the Swin Transformer in conjunction with LaneNet (called ST-LaneNet). The experience results showed that the true positive detection rate can reach 97.53% for easy lanes and 96.83% for difficult lanes (such as scenes with severe occlusion and extreme lighting conditions), which can better accomplish the objective of detecting lane lines. In 1000 detection samples, the average detection accuracy can reach 97.83%, the average inference time per image can reach 17.8 ms, and the average number of frames per second can reach 64.8 Hz. The programming scripts and associated models for this project can be accessed openly at the following GitHub repository: https://github.com/Duane711/Lane-line-detection-ST-LaneNet .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s10033-024-00992-z
- https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-z
- OA Status
- diamond
- Cited By
- 7
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392166254
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392166254Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s10033-024-00992-zDigital Object Identifier
- Title
-
ST-LaneNet: Lane Line Detection Method Based on Swin Transformer and LaneNetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-26Full publication date if available
- Authors
-
Yufeng Du, Rongyun Zhang, Peicheng Shi, Linfeng Zhao, Bin Zhang, Yaming LiuList of authors in order
- Landing page
-
https://doi.org/10.1186/s10033-024-00992-zPublisher landing page
- PDF URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-zDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-zDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Computer vision, Line (geometry), Source lines of code, Transformer, Deep learning, Scripting language, Inference, Voltage, Software, Engineering, Mathematics, Geometry, Programming language, Electrical engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392166254 |
|---|---|
| doi | https://doi.org/10.1186/s10033-024-00992-z |
| ids.doi | https://doi.org/10.1186/s10033-024-00992-z |
| ids.openalex | https://openalex.org/W4392166254 |
| fwci | 2.79503942 |
| type | article |
| title | ST-LaneNet: Lane Line Detection Method Based on Swin Transformer and LaneNet |
| awards[0].id | https://openalex.org/G7099223687 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51575001 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6197071400 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 51605003 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G4645315868 |
| awards[2].funder_id | https://openalex.org/F4320334973 |
| awards[2].display_name | |
| awards[2].funder_award_id | KJ2020A0358 |
| awards[2].funder_display_name | Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province |
| biblio.issue | 1 |
| biblio.volume | 37 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9919999837875366 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320334973 |
| funders[1].ror | https://ror.org/012m7k033 |
| funders[1].display_name | Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7702608108520508 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7068164944648743 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5958272218704224 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C198352243 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5082735419273376 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[3].display_name | Line (geometry) |
| concepts[4].id | https://openalex.org/C199519371 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4796653091907501 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q942695 |
| concepts[4].display_name | Source lines of code |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46583738923072815 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44670283794403076 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C61423126 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4444096088409424 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q187432 |
| concepts[7].display_name | Scripting language |
| concepts[8].id | https://openalex.org/C2776214188 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4195185899734497 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[8].display_name | Inference |
| concepts[9].id | https://openalex.org/C165801399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.15960702300071716 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[9].display_name | Voltage |
| concepts[10].id | https://openalex.org/C2777904410 |
| concepts[10].level | 2 |
| concepts[10].score | 0.15568488836288452 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[10].display_name | Software |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09587857127189636 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07869130373001099 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C119599485 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[15].display_name | Electrical engineering |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7702608108520508 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7068164944648743 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5958272218704224 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/line |
| keywords[3].score | 0.5082735419273376 |
| keywords[3].display_name | Line (geometry) |
| keywords[4].id | https://openalex.org/keywords/source-lines-of-code |
| keywords[4].score | 0.4796653091907501 |
| keywords[4].display_name | Source lines of code |
| keywords[5].id | https://openalex.org/keywords/transformer |
| keywords[5].score | 0.46583738923072815 |
| keywords[5].display_name | Transformer |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.44670283794403076 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/scripting-language |
| keywords[7].score | 0.4444096088409424 |
| keywords[7].display_name | Scripting language |
| keywords[8].id | https://openalex.org/keywords/inference |
| keywords[8].score | 0.4195185899734497 |
| keywords[8].display_name | Inference |
| keywords[9].id | https://openalex.org/keywords/voltage |
| keywords[9].score | 0.15960702300071716 |
| keywords[9].display_name | Voltage |
| keywords[10].id | https://openalex.org/keywords/software |
| keywords[10].score | 0.15568488836288452 |
| keywords[10].display_name | Software |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.09587857127189636 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.07869130373001099 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1186/s10033-024-00992-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4220650901 |
| locations[0].source.issn | 1000-9345, 2192-8258 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1000-9345 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Chinese Journal of Mechanical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_name | China Machine Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319730 |
| locations[0].source.host_organization_lineage_names | China Machine Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-z |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chinese Journal of Mechanical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1186/s10033-024-00992-z |
| locations[1].id | pmh:oai:doaj.org/article:34745d9667234d89b37ae982668052b6 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Chinese Journal of Mechanical Engineering, Vol 37, Iss 1, Pp 1-16 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/34745d9667234d89b37ae982668052b6 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102938222 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1470-3183 |
| authorships[0].author.display_name | Yufeng Du |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[0].institutions[0].id | https://openalex.org/I70908550 |
| authorships[0].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yufeng Du |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[1].author.id | https://openalex.org/A5021053488 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3030-2125 |
| authorships[1].author.display_name | Rongyun Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[1].institutions[0].id | https://openalex.org/I70908550 |
| authorships[1].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rongyun Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[2].author.id | https://openalex.org/A5046985719 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1533-8154 |
| authorships[2].author.display_name | Peicheng Shi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[2].affiliations[0].raw_affiliation_string | Automotive New Technology Anhui Engineering and Technology Research Center, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[2].institutions[0].id | https://openalex.org/I70908550 |
| authorships[2].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peicheng Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Automotive New Technology Anhui Engineering and Technology Research Center, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[3].author.id | https://openalex.org/A5100765832 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3970-6337 |
| authorships[3].author.display_name | Linfeng Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, 230009, China |
| authorships[3].institutions[0].id | https://openalex.org/I16365422 |
| authorships[3].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hefei University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Linfeng Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, 230009, China |
| authorships[4].author.id | https://openalex.org/A5100392840 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7244-9566 |
| authorships[4].author.display_name | Bin Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[4].institutions[0].id | https://openalex.org/I70908550 |
| authorships[4].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui Polytechnic University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bin Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[5].author.id | https://openalex.org/A5101553467 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3982-001X |
| authorships[5].author.display_name | Yaming Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| authorships[5].institutions[0].id | https://openalex.org/I70908550 |
| authorships[5].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui Polytechnic University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yaming Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-z |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ST-LaneNet: Lane Line Detection Method Based on Swin Transformer and LaneNet |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W2046765700, https://openalex.org/W2780629932, https://openalex.org/W4384345686, https://openalex.org/W2357937784, https://openalex.org/W2547618384, https://openalex.org/W4394391052, https://openalex.org/W4206178588, https://openalex.org/W3094491777, https://openalex.org/W3214715529, https://openalex.org/W4287635093 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1186/s10033-024-00992-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4220650901 |
| best_oa_location.source.issn | 1000-9345, 2192-8258 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1000-9345 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_name | China Machine Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| best_oa_location.source.host_organization_lineage_names | China Machine Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-z |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s10033-024-00992-z |
| primary_location.id | doi:10.1186/s10033-024-00992-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4220650901 |
| primary_location.source.issn | 1000-9345, 2192-8258 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1000-9345 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Chinese Journal of Mechanical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_name | China Machine Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319730 |
| primary_location.source.host_organization_lineage_names | China Machine Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cjme.springeropen.com/counter/pdf/10.1186/s10033-024-00992-z |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chinese Journal of Mechanical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1186/s10033-024-00992-z |
| publication_date | 2024-02-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4210334043, https://openalex.org/W2780740184, https://openalex.org/W3154977728, https://openalex.org/W3174192326, https://openalex.org/W3107090568, https://openalex.org/W2038270407, https://openalex.org/W3201453226, https://openalex.org/W2964199920, https://openalex.org/W2516555671, https://openalex.org/W3135587035, https://openalex.org/W2964332990, https://openalex.org/W2890977584, https://openalex.org/W2981992989, https://openalex.org/W3025407686, https://openalex.org/W3136774534, https://openalex.org/W6726378182, https://openalex.org/W1991084701, https://openalex.org/W1903029394, https://openalex.org/W2963881378, https://openalex.org/W2811294003, https://openalex.org/W2157331557, https://openalex.org/W2531409750, https://openalex.org/W2286929393, https://openalex.org/W2987322772, https://openalex.org/W2194775991, https://openalex.org/W3138516171, https://openalex.org/W2913715341, https://openalex.org/W2884561390, https://openalex.org/W2963856865, https://openalex.org/W114517082, https://openalex.org/W2419448466, https://openalex.org/W2525579820 |
| referenced_works_count | 32 |
| abstract_inverted_index.. | 214 |
| abstract_inverted_index.a | 24, 100 |
| abstract_inverted_index.As | 16 |
| abstract_inverted_index.In | 162 |
| abstract_inverted_index.To | 93 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.at | 208 |
| abstract_inverted_index.be | 205 |
| abstract_inverted_index.by | 37, 84 |
| abstract_inverted_index.in | 39, 115 |
| abstract_inverted_index.is | 58, 82 |
| abstract_inverted_index.it | 57 |
| abstract_inverted_index.of | 3, 26, 48, 54, 72, 78, 90, 158, 187 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 11, 44, 67 |
| abstract_inverted_index.we | 98 |
| abstract_inverted_index.Hz. | 194 |
| abstract_inverted_index.The | 1, 76, 121, 195 |
| abstract_inverted_index.and | 19, 51, 88, 137, 148, 183, 198 |
| abstract_inverted_index.can | 131, 153, 170, 179, 191, 204 |
| abstract_inverted_index.for | 30, 60, 105, 134, 139, 201 |
| abstract_inverted_index.ms, | 182 |
| abstract_inverted_index.per | 177, 189 |
| abstract_inverted_index.the | 9, 40, 45, 52, 70, 85, 95, 112, 126, 156, 166, 173, 184, 209 |
| abstract_inverted_index.1000 | 163 |
| abstract_inverted_index.17.8 | 181 |
| abstract_inverted_index.64.8 | 193 |
| abstract_inverted_index.Swin | 113 |
| abstract_inverted_index.This | 109 |
| abstract_inverted_index.been | 35 |
| abstract_inverted_index.deep | 17, 27, 102 |
| abstract_inverted_index.easy | 59, 135 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.lack | 53 |
| abstract_inverted_index.lane | 13, 31, 49, 74, 79, 91, 106, 160 |
| abstract_inverted_index.line | 32, 80, 107 |
| abstract_inverted_index.rate | 130 |
| abstract_inverted_index.that | 125 |
| abstract_inverted_index.this | 202 |
| abstract_inverted_index.time | 176 |
| abstract_inverted_index.true | 127 |
| abstract_inverted_index.with | 63, 69, 117, 145 |
| abstract_inverted_index.(such | 142 |
| abstract_inverted_index.image | 178 |
| abstract_inverted_index.lanes | 136, 141 |
| abstract_inverted_index.lines | 14, 50 |
| abstract_inverted_index.local | 65 |
| abstract_inverted_index.novel | 101 |
| abstract_inverted_index.other | 61 |
| abstract_inverted_index.owing | 43 |
| abstract_inverted_index.reach | 132, 171, 180, 192 |
| abstract_inverted_index.which | 152 |
| abstract_inverted_index.96.83% | 138 |
| abstract_inverted_index.97.53% | 133 |
| abstract_inverted_index.GitHub | 211 |
| abstract_inverted_index.better | 154 |
| abstract_inverted_index.field. | 41 |
| abstract_inverted_index.frames | 188 |
| abstract_inverted_index.lines. | 75, 92, 161 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.models | 200 |
| abstract_inverted_index.number | 186 |
| abstract_inverted_index.openly | 207 |
| abstract_inverted_index.relies | 7 |
| abstract_inverted_index.scenes | 144 |
| abstract_inverted_index.second | 190 |
| abstract_inverted_index.severe | 146 |
| abstract_inverted_index.showed | 124 |
| abstract_inverted_index.simple | 46 |
| abstract_inverted_index.vision | 21 |
| abstract_inverted_index.(called | 119 |
| abstract_inverted_index.97.83%, | 172 |
| abstract_inverted_index.LaneNet | 118 |
| abstract_inverted_index.ability | 10 |
| abstract_inverted_index.address | 94 |
| abstract_inverted_index.average | 167, 174, 185 |
| abstract_inverted_index.driving | 5 |
| abstract_inverted_index.evolve, | 23 |
| abstract_inverted_index.extreme | 149 |
| abstract_inverted_index.heavily | 6 |
| abstract_inverted_index.limited | 83 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.objects | 62 |
| abstract_inverted_index.process | 71 |
| abstract_inverted_index.project | 203 |
| abstract_inverted_index.propose | 99 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.scripts | 197 |
| abstract_inverted_index.similar | 64 |
| abstract_inverted_index.variety | 25 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.accessed | 206 |
| abstract_inverted_index.accuracy | 169 |
| abstract_inverted_index.accurate | 12 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.computer | 20 |
| abstract_inverted_index.learning | 18, 103 |
| abstract_inverted_index.lighting | 150 |
| abstract_inverted_index.positive | 128 |
| abstract_inverted_index.proposed | 36 |
| abstract_inverted_index.quantity | 87 |
| abstract_inverted_index.samples, | 165 |
| abstract_inverted_index.detecting | 73, 159 |
| abstract_inverted_index.detection | 33, 81, 129, 164, 168 |
| abstract_inverted_index.difficult | 140 |
| abstract_inverted_index.diversity | 89 |
| abstract_inverted_index.features, | 56 |
| abstract_inverted_index.following | 210 |
| abstract_inverted_index.inference | 175 |
| abstract_inverted_index.interfere | 68 |
| abstract_inverted_index.leverages | 111 |
| abstract_inverted_index.objective | 157 |
| abstract_inverted_index.occlusion | 147 |
| abstract_inverted_index.precision | 77 |
| abstract_inverted_index.accomplish | 155 |
| abstract_inverted_index.appearance | 47 |
| abstract_inverted_index.associated | 199 |
| abstract_inverted_index.autonomous | 4 |
| abstract_inverted_index.detection. | 15, 108 |
| abstract_inverted_index.experience | 122 |
| abstract_inverted_index.Transformer | 114 |
| abstract_inverted_index.advancement | 2 |
| abstract_inverted_index.appearances | 66 |
| abstract_inverted_index.challenges, | 97 |
| abstract_inverted_index.conjunction | 116 |
| abstract_inverted_index.distinctive | 55 |
| abstract_inverted_index.programming | 196 |
| abstract_inverted_index.repository: | 212 |
| abstract_inverted_index.researchers | 38 |
| abstract_inverted_index.ST-LaneNet). | 120 |
| abstract_inverted_index.conditions), | 151 |
| abstract_inverted_index.technologies | 22 |
| abstract_inverted_index.unpredictable | 86 |
| abstract_inverted_index.aforementioned | 96 |
| abstract_inverted_index.learning-based | 28 |
| abstract_inverted_index.https://github.com/Duane711/Lane-line-detection-ST-LaneNet | 213 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.84624248 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |