ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-022-00909-0
Lane detection is one of the key techniques to realize advanced driving assistance and automatic driving. However, lane detection networks based on deep learning have significant shortcomings. The detection results are often unsatisfactory when there are shadows, degraded lane markings, and vehicle occlusion lanes. Therefore, a continuous multi-frame image sequence lane detection network is proposed. Specifically, the continuous six-frame image sequence is input into the network, in which the scene information of each frame image is extracted by an encoder composed of Swin Transformer blocks and input into the PredRNN. Continuous multi-frame of the driving scene is modeled as time-series by ST-LSTM blocks, and then, the shape changes and motion trajectory in the spatiotemporal sequence are effectively modeled. Finally, through the decoder composed of Swin Transformer blocks, the features are obtained and reconstructed to complete the detection task. Extensive experiments on two large-scale datasets demonstrate that the proposed method outperforms the competing methods in lane detection, especially in handling difficult situations. Experiments are carried out based on the TuSimple dataset. The results show: for easy scenes, the validation accuracy is 97.46%, the test accuracy is 97.37%, and the precision is 0.865. For complex scenes, the validation accuracy is 97.38%, the test accuracy is 97.29%, and the precision is 0.859. The running time is 4.4 ms. Experiments are carried out based on the CULane dataset. The results show that, for easy scenes, the validation accuracy is 97.03%, the test accuracy is 96.84%, and the precision is 0.837. For complex scenes, the validation accuracy is 96.18%, the test accuracy is 95.92%, and the precision is 0.829. The running time is 6.5 ms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-022-00909-0
- https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309922936
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309922936Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-022-00909-0Digital Object Identifier
- Title
-
ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-24Full publication date if available
- Authors
-
Rongyun Zhang, Yufeng Du, Peicheng Shi, Lifeng Zhao, Yaming Liu, Haoran LiList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-022-00909-0Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Frame (networking), Computer vision, Encoder, Transformer, Pattern recognition (psychology), Engineering, Voltage, Telecommunications, Operating system, Electrical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309922936 |
|---|---|
| doi | https://doi.org/10.1007/s40747-022-00909-0 |
| ids.doi | https://doi.org/10.1007/s40747-022-00909-0 |
| ids.openalex | https://openalex.org/W4309922936 |
| fwci | 0.29986601 |
| type | article |
| title | ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid network |
| awards[0].id | https://openalex.org/G7099223687 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51575001 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6197071400 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 51605003 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 5 |
| biblio.volume | 9 |
| biblio.last_page | 4855 |
| biblio.first_page | 4837 |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9656000137329102 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7895926237106323 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7840428352355957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C126042441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6395419836044312 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[2].display_name | Frame (networking) |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6384212970733643 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C118505674 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47143831849098206 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[4].display_name | Encoder |
| concepts[5].id | https://openalex.org/C66322947 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4395878314971924 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[5].display_name | Transformer |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3720077872276306 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.10477900505065918 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C165801399 |
| concepts[8].level | 2 |
| concepts[8].score | 0.06307432055473328 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[8].display_name | Voltage |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C119599485 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[11].display_name | Electrical engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7895926237106323 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7840428352355957 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/frame |
| keywords[2].score | 0.6395419836044312 |
| keywords[2].display_name | Frame (networking) |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.6384212970733643 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/encoder |
| keywords[4].score | 0.47143831849098206 |
| keywords[4].display_name | Encoder |
| keywords[5].id | https://openalex.org/keywords/transformer |
| keywords[5].score | 0.4395878314971924 |
| keywords[5].display_name | Transformer |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3720077872276306 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.10477900505065918 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/voltage |
| keywords[8].score | 0.06307432055473328 |
| keywords[8].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.1007/s40747-022-00909-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-022-00909-0 |
| locations[1].id | pmh:oai:doaj.org/article:2d94c6a5b779466e849e76c01336eb0e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 9, Iss 5, Pp 4837-4855 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/2d94c6a5b779466e849e76c01336eb0e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021053488 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3030-2125 |
| authorships[0].author.display_name | Rongyun Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[0].affiliations[0].raw_affiliation_string | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[0].institutions[0].id | https://openalex.org/I70908550 |
| authorships[0].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rongyun Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[1].author.id | https://openalex.org/A5102938222 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1470-3183 |
| authorships[1].author.display_name | Yufeng Du |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[1].affiliations[0].raw_affiliation_string | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[1].institutions[0].id | https://openalex.org/I70908550 |
| authorships[1].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yufeng Du |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[2].author.id | https://openalex.org/A5046985719 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1533-8154 |
| authorships[2].author.display_name | Peicheng Shi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[2].affiliations[0].raw_affiliation_string | Automotive New Technology Anhui Engineering and Technology Research Center, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[2].institutions[0].id | https://openalex.org/I70908550 |
| authorships[2].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peicheng Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Automotive New Technology Anhui Engineering and Technology Research Center, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[3].author.id | https://openalex.org/A5100570062 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lifeng Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16365422 |
| authorships[3].affiliations[0].raw_affiliation_string | The School of Automotive and Traffic Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei, 230009, China |
| authorships[3].institutions[0].id | https://openalex.org/I16365422 |
| authorships[3].institutions[0].ror | https://ror.org/02czkny70 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I16365422 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hefei University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lifeng Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The School of Automotive and Traffic Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei, 230009, China |
| authorships[4].author.id | https://openalex.org/A5101553467 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3982-001X |
| authorships[4].author.display_name | Yaming Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[4].affiliations[0].raw_affiliation_string | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[4].institutions[0].id | https://openalex.org/I70908550 |
| authorships[4].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Anhui Polytechnic University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yaming Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[5].author.id | https://openalex.org/A5100327745 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2559-9585 |
| authorships[5].author.display_name | Haoran Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[5].affiliations[0].raw_affiliation_string | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| authorships[5].institutions[0].id | https://openalex.org/I70908550 |
| authorships[5].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui Polytechnic University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Haoran Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Beijing Middle Road, Wuhu, 241000, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W4390516098, https://openalex.org/W2181948922, https://openalex.org/W2384362569, https://openalex.org/W2142795561, https://openalex.org/W4205302943, https://openalex.org/W2561132942, https://openalex.org/W3155418658, https://openalex.org/W4243199227, https://openalex.org/W2379948177, https://openalex.org/W2119949815 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-022-00909-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-022-00909-0 |
| primary_location.id | doi:10.1007/s40747-022-00909-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-022-00909-0.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-022-00909-0 |
| publication_date | 2022-11-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3169865585, https://openalex.org/W3172798612, https://openalex.org/W3118432192, https://openalex.org/W3119160127, https://openalex.org/W3118476129, https://openalex.org/W3179888767, https://openalex.org/W3172752666, https://openalex.org/W3180134609, https://openalex.org/W3176027594, https://openalex.org/W2006576296, https://openalex.org/W6600339963, https://openalex.org/W4313156423, https://openalex.org/W2913723144, https://openalex.org/W2989279786, https://openalex.org/W3192684372, https://openalex.org/W2995724453, https://openalex.org/W2117594136, https://openalex.org/W3034985293, https://openalex.org/W2118545852, https://openalex.org/W2131076267, https://openalex.org/W2082747607, https://openalex.org/W2529429228, https://openalex.org/W2808357662, https://openalex.org/W2038270407, https://openalex.org/W2963881378, https://openalex.org/W3125832420, https://openalex.org/W2897239658, https://openalex.org/W3119586106, https://openalex.org/W3176566042, https://openalex.org/W2981441441, https://openalex.org/W3109790059, https://openalex.org/W2984481065, https://openalex.org/W2277132981, https://openalex.org/W3096831136, https://openalex.org/W2963856865, https://openalex.org/W3138516171, https://openalex.org/W2964199920, https://openalex.org/W2157331557, https://openalex.org/W2194775991, https://openalex.org/W2108598243 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 46 |
| abstract_inverted_index.an | 79 |
| abstract_inverted_index.as | 99 |
| abstract_inverted_index.by | 78, 101 |
| abstract_inverted_index.in | 67, 112, 154, 158 |
| abstract_inverted_index.is | 3, 54, 62, 76, 97, 180, 185, 190, 198, 203, 208, 213, 235, 240, 245, 253, 258, 263, 268 |
| abstract_inverted_index.of | 5, 72, 82, 93, 124 |
| abstract_inverted_index.on | 22, 141, 167, 221 |
| abstract_inverted_index.to | 9, 134 |
| abstract_inverted_index.4.4 | 214 |
| abstract_inverted_index.6.5 | 269 |
| abstract_inverted_index.For | 192, 247 |
| abstract_inverted_index.The | 28, 171, 210, 225, 265 |
| abstract_inverted_index.and | 14, 41, 86, 104, 109, 132, 187, 205, 242, 260 |
| abstract_inverted_index.are | 31, 36, 116, 130, 163, 217 |
| abstract_inverted_index.for | 174, 229 |
| abstract_inverted_index.key | 7 |
| abstract_inverted_index.ms. | 215, 270 |
| abstract_inverted_index.one | 4 |
| abstract_inverted_index.out | 165, 219 |
| abstract_inverted_index.the | 6, 57, 65, 69, 89, 94, 106, 113, 121, 128, 136, 147, 151, 168, 177, 182, 188, 195, 200, 206, 222, 232, 237, 243, 250, 255, 261 |
| abstract_inverted_index.two | 142 |
| abstract_inverted_index.Lane | 1 |
| abstract_inverted_index.Swin | 83, 125 |
| abstract_inverted_index.deep | 23 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.easy | 175, 230 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.into | 64, 88 |
| abstract_inverted_index.lane | 18, 39, 51, 155 |
| abstract_inverted_index.show | 227 |
| abstract_inverted_index.test | 183, 201, 238, 256 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.time | 212, 267 |
| abstract_inverted_index.when | 34 |
| abstract_inverted_index.based | 21, 166, 220 |
| abstract_inverted_index.frame | 74 |
| abstract_inverted_index.image | 49, 60, 75 |
| abstract_inverted_index.input | 63, 87 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.scene | 70, 96 |
| abstract_inverted_index.shape | 107 |
| abstract_inverted_index.show: | 173 |
| abstract_inverted_index.task. | 138 |
| abstract_inverted_index.that, | 228 |
| abstract_inverted_index.then, | 105 |
| abstract_inverted_index.there | 35 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.0.829. | 264 |
| abstract_inverted_index.0.837. | 246 |
| abstract_inverted_index.0.859. | 209 |
| abstract_inverted_index.0.865. | 191 |
| abstract_inverted_index.CULane | 223 |
| abstract_inverted_index.blocks | 85 |
| abstract_inverted_index.lanes. | 44 |
| abstract_inverted_index.method | 149 |
| abstract_inverted_index.motion | 110 |
| abstract_inverted_index.95.92%, | 259 |
| abstract_inverted_index.96.18%, | 254 |
| abstract_inverted_index.96.84%, | 241 |
| abstract_inverted_index.97.03%, | 236 |
| abstract_inverted_index.97.29%, | 204 |
| abstract_inverted_index.97.37%, | 186 |
| abstract_inverted_index.97.38%, | 199 |
| abstract_inverted_index.97.46%, | 181 |
| abstract_inverted_index.ST-LSTM | 102 |
| abstract_inverted_index.blocks, | 103, 127 |
| abstract_inverted_index.carried | 164, 218 |
| abstract_inverted_index.changes | 108 |
| abstract_inverted_index.complex | 193, 248 |
| abstract_inverted_index.decoder | 122 |
| abstract_inverted_index.driving | 12, 95 |
| abstract_inverted_index.encoder | 80 |
| abstract_inverted_index.methods | 153 |
| abstract_inverted_index.modeled | 98 |
| abstract_inverted_index.network | 53 |
| abstract_inverted_index.realize | 10 |
| abstract_inverted_index.results | 30, 172, 226 |
| abstract_inverted_index.running | 211, 266 |
| abstract_inverted_index.scenes, | 176, 194, 231, 249 |
| abstract_inverted_index.through | 120 |
| abstract_inverted_index.vehicle | 42 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 119 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.PredRNN. | 90 |
| abstract_inverted_index.TuSimple | 169 |
| abstract_inverted_index.accuracy | 179, 184, 197, 202, 234, 239, 252, 257 |
| abstract_inverted_index.advanced | 11 |
| abstract_inverted_index.complete | 135 |
| abstract_inverted_index.composed | 81, 123 |
| abstract_inverted_index.dataset. | 170, 224 |
| abstract_inverted_index.datasets | 144 |
| abstract_inverted_index.degraded | 38 |
| abstract_inverted_index.driving. | 16 |
| abstract_inverted_index.features | 129 |
| abstract_inverted_index.handling | 159 |
| abstract_inverted_index.learning | 24 |
| abstract_inverted_index.modeled. | 118 |
| abstract_inverted_index.network, | 66 |
| abstract_inverted_index.networks | 20 |
| abstract_inverted_index.obtained | 131 |
| abstract_inverted_index.proposed | 148 |
| abstract_inverted_index.sequence | 50, 61, 115 |
| abstract_inverted_index.shadows, | 37 |
| abstract_inverted_index.Extensive | 139 |
| abstract_inverted_index.automatic | 15 |
| abstract_inverted_index.competing | 152 |
| abstract_inverted_index.detection | 2, 19, 29, 52, 137 |
| abstract_inverted_index.difficult | 160 |
| abstract_inverted_index.extracted | 77 |
| abstract_inverted_index.markings, | 40 |
| abstract_inverted_index.occlusion | 43 |
| abstract_inverted_index.precision | 189, 207, 244, 262 |
| abstract_inverted_index.proposed. | 55 |
| abstract_inverted_index.six-frame | 59 |
| abstract_inverted_index.Continuous | 91 |
| abstract_inverted_index.Therefore, | 45 |
| abstract_inverted_index.assistance | 13 |
| abstract_inverted_index.continuous | 47, 58 |
| abstract_inverted_index.detection, | 156 |
| abstract_inverted_index.especially | 157 |
| abstract_inverted_index.techniques | 8 |
| abstract_inverted_index.trajectory | 111 |
| abstract_inverted_index.validation | 178, 196, 233, 251 |
| abstract_inverted_index.Experiments | 162, 216 |
| abstract_inverted_index.Transformer | 84, 126 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.effectively | 117 |
| abstract_inverted_index.experiments | 140 |
| abstract_inverted_index.information | 71 |
| abstract_inverted_index.large-scale | 143 |
| abstract_inverted_index.multi-frame | 48, 92 |
| abstract_inverted_index.outperforms | 150 |
| abstract_inverted_index.significant | 26 |
| abstract_inverted_index.situations. | 161 |
| abstract_inverted_index.time-series | 100 |
| abstract_inverted_index.Specifically, | 56 |
| abstract_inverted_index.reconstructed | 133 |
| abstract_inverted_index.shortcomings. | 27 |
| abstract_inverted_index.spatiotemporal | 114 |
| abstract_inverted_index.unsatisfactory | 33 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5021053488 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I70908550 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.51683275 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |