Stacked BNAS: Rethinking Broad Convolutional Neural Network for Neural Architecture Search Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.07722
Different from other deep scalable architecture-based NAS approaches, Broad Neural Architecture Search (BNAS) proposes a broad scalable architecture which consists of convolution and enhancement blocks, dubbed Broad Convolutional Neural Network (BCNN), as the search space for amazing efficiency improvement. BCNN reuses the topologies of cells in the convolution block so that BNAS can employ few cells for efficient search. Moreover, multi-scale feature fusion and knowledge embedding are proposed to improve the performance of BCNN with shallow topology. However, BNAS suffers some drawbacks: 1) insufficient representation diversity for feature fusion and enhancement and 2) time consumption of knowledge embedding design by human experts. This paper proposes Stacked BNAS, whose search space is a developed broad scalable architecture named Stacked BCNN, with better performance than BNAS. On the one hand, Stacked BCNN treats mini BCNN as a basic block to preserve comprehensive representation and deliver powerful feature extraction ability. For multi-scale feature enhancement, each mini BCNN feeds the outputs of deep and broad cells to the enhancement cell. For multi-scale feature fusion, each mini BCNN feeds the outputs of deep, broad and enhancement cells to the output node. On the other hand, Knowledge Embedding Search (KES) is proposed to learn appropriate knowledge embeddings in a differentiable way. Moreover, the basic unit of KES is an over-parameterized knowledge embedding module that consists of all possible candidate knowledge embeddings. Experimental results show that 1) Stacked BNAS obtains better performance than BNAS-v2 on both CIFAR-10 and ImageNet, 2) the proposed KES algorithm contributes to reducing the parameters of the learned architecture with satisfactory performance, and 3) Stacked BNAS delivers a state-of-the-art efficiency of 0.02 GPU days.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.07722
- https://arxiv.org/pdf/2111.07722
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226530147
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226530147Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.07722Digital Object Identifier
- Title
-
Stacked BNAS: Rethinking Broad Convolutional Neural Network for Neural Architecture SearchWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-15Full publication date if available
- Authors
-
Zixiang Ding, Yaran Chen, Nannan Li, Dongbin ZhaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.07722Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.07722Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.07722Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, Scalability, Embedding, Block (permutation group theory), Feature (linguistics), Artificial intelligence, Convolution (computer science), Pattern recognition (psychology), Artificial neural network, Mathematics, Philosophy, Geometry, Linguistics, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226530147 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.07722 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.07722 |
| ids.openalex | https://openalex.org/W4226530147 |
| fwci | |
| type | preprint |
| title | Stacked BNAS: Rethinking Broad Convolutional Neural Network for Neural Architecture Search |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T12702 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2808 |
| topics[1].subfield.display_name | Neurology |
| topics[1].display_name | Brain Tumor Detection and Classification |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7011890411376953 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6900338530540466 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6553711295127869 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C41608201 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6376926898956299 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[3].display_name | Embedding |
| concepts[4].id | https://openalex.org/C2777210771 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6184159517288208 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[4].display_name | Block (permutation group theory) |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5557006001472473 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45207005739212036 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C45347329 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4334556460380554 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[7].display_name | Convolution (computer science) |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3973577618598938 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3718520700931549 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13663017749786377 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C77088390 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[14].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7011890411376953 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.6900338530540466 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.6553711295127869 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/embedding |
| keywords[3].score | 0.6376926898956299 |
| keywords[3].display_name | Embedding |
| keywords[4].id | https://openalex.org/keywords/block |
| keywords[4].score | 0.6184159517288208 |
| keywords[4].display_name | Block (permutation group theory) |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5557006001472473 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.45207005739212036 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/convolution |
| keywords[7].score | 0.4334556460380554 |
| keywords[7].display_name | Convolution (computer science) |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3973577618598938 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.3718520700931549 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.13663017749786377 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.07722 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.07722 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.07722 |
| locations[1].id | doi:10.48550/arxiv.2111.07722 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.07722 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039262688 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5902-9073 |
| authorships[0].author.display_name | Zixiang Ding |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ding, Zixiang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053853035 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9356-0610 |
| authorships[1].author.display_name | Yaran Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Yaran |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100419518 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5563-3735 |
| authorships[2].author.display_name | Nannan Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Nannan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100624298 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8218-9633 |
| authorships[3].author.display_name | Dongbin Zhao |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhao, Dongbin |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.07722 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stacked BNAS: Rethinking Broad Convolutional Neural Network for Neural Architecture Search |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2081900870, https://openalex.org/W2389214306, https://openalex.org/W4293226380, https://openalex.org/W4235240664, https://openalex.org/W2965083567, https://openalex.org/W1838576100, https://openalex.org/W2095886385, https://openalex.org/W2889616422, https://openalex.org/W2089704382, https://openalex.org/W2964954556 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.07722 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.07722 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.07722 |
| primary_location.id | pmh:oai:arXiv.org:2111.07722 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.07722 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.07722 |
| publication_date | 2021-11-15 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 111, 134, 202, 264 |
| abstract_inverted_index.1) | 82, 229 |
| abstract_inverted_index.2) | 92, 242 |
| abstract_inverted_index.3) | 260 |
| abstract_inverted_index.On | 124, 186 |
| abstract_inverted_index.an | 212 |
| abstract_inverted_index.as | 31, 133 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.in | 45, 201 |
| abstract_inverted_index.is | 110, 194, 211 |
| abstract_inverted_index.of | 20, 43, 72, 95, 157, 176, 209, 219, 252, 267 |
| abstract_inverted_index.on | 237 |
| abstract_inverted_index.so | 49 |
| abstract_inverted_index.to | 68, 137, 162, 182, 196, 248 |
| abstract_inverted_index.For | 147, 166 |
| abstract_inverted_index.GPU | 269 |
| abstract_inverted_index.KES | 210, 245 |
| abstract_inverted_index.NAS | 6 |
| abstract_inverted_index.all | 220 |
| abstract_inverted_index.and | 22, 63, 89, 91, 141, 159, 179, 240, 259 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.can | 52 |
| abstract_inverted_index.few | 54 |
| abstract_inverted_index.for | 35, 56, 86 |
| abstract_inverted_index.one | 126 |
| abstract_inverted_index.the | 32, 41, 46, 70, 125, 155, 163, 174, 183, 187, 206, 243, 250, 253 |
| abstract_inverted_index.0.02 | 268 |
| abstract_inverted_index.BCNN | 39, 73, 129, 132, 153, 172 |
| abstract_inverted_index.BNAS | 51, 78, 231, 262 |
| abstract_inverted_index.This | 102 |
| abstract_inverted_index.both | 238 |
| abstract_inverted_index.deep | 3, 158 |
| abstract_inverted_index.each | 151, 170 |
| abstract_inverted_index.from | 1 |
| abstract_inverted_index.mini | 131, 152, 171 |
| abstract_inverted_index.show | 227 |
| abstract_inverted_index.some | 80 |
| abstract_inverted_index.than | 122, 235 |
| abstract_inverted_index.that | 50, 217, 228 |
| abstract_inverted_index.time | 93 |
| abstract_inverted_index.unit | 208 |
| abstract_inverted_index.way. | 204 |
| abstract_inverted_index.with | 74, 119, 256 |
| abstract_inverted_index.(KES) | 193 |
| abstract_inverted_index.BCNN, | 118 |
| abstract_inverted_index.BNAS, | 106 |
| abstract_inverted_index.BNAS. | 123 |
| abstract_inverted_index.Broad | 8, 26 |
| abstract_inverted_index.basic | 135, 207 |
| abstract_inverted_index.block | 48, 136 |
| abstract_inverted_index.broad | 15, 113, 160, 178 |
| abstract_inverted_index.cell. | 165 |
| abstract_inverted_index.cells | 44, 55, 161, 181 |
| abstract_inverted_index.days. | 270 |
| abstract_inverted_index.deep, | 177 |
| abstract_inverted_index.feeds | 154, 173 |
| abstract_inverted_index.hand, | 127, 189 |
| abstract_inverted_index.human | 100 |
| abstract_inverted_index.learn | 197 |
| abstract_inverted_index.named | 116 |
| abstract_inverted_index.node. | 185 |
| abstract_inverted_index.other | 2, 188 |
| abstract_inverted_index.paper | 103 |
| abstract_inverted_index.space | 34, 109 |
| abstract_inverted_index.which | 18 |
| abstract_inverted_index.whose | 107 |
| abstract_inverted_index.(BNAS) | 12 |
| abstract_inverted_index.Neural | 9, 28 |
| abstract_inverted_index.Search | 11, 192 |
| abstract_inverted_index.better | 120, 233 |
| abstract_inverted_index.design | 98 |
| abstract_inverted_index.dubbed | 25 |
| abstract_inverted_index.employ | 53 |
| abstract_inverted_index.fusion | 62, 88 |
| abstract_inverted_index.module | 216 |
| abstract_inverted_index.output | 184 |
| abstract_inverted_index.reuses | 40 |
| abstract_inverted_index.search | 33, 108 |
| abstract_inverted_index.treats | 130 |
| abstract_inverted_index.(BCNN), | 30 |
| abstract_inverted_index.BNAS-v2 | 236 |
| abstract_inverted_index.Network | 29 |
| abstract_inverted_index.Stacked | 105, 117, 128, 230, 261 |
| abstract_inverted_index.amazing | 36 |
| abstract_inverted_index.blocks, | 24 |
| abstract_inverted_index.deliver | 142 |
| abstract_inverted_index.feature | 61, 87, 144, 149, 168 |
| abstract_inverted_index.fusion, | 169 |
| abstract_inverted_index.improve | 69 |
| abstract_inverted_index.learned | 254 |
| abstract_inverted_index.obtains | 232 |
| abstract_inverted_index.outputs | 156, 175 |
| abstract_inverted_index.results | 226 |
| abstract_inverted_index.search. | 58 |
| abstract_inverted_index.shallow | 75 |
| abstract_inverted_index.suffers | 79 |
| abstract_inverted_index.CIFAR-10 | 239 |
| abstract_inverted_index.However, | 77 |
| abstract_inverted_index.ability. | 146 |
| abstract_inverted_index.consists | 19, 218 |
| abstract_inverted_index.delivers | 263 |
| abstract_inverted_index.experts. | 101 |
| abstract_inverted_index.possible | 221 |
| abstract_inverted_index.powerful | 143 |
| abstract_inverted_index.preserve | 138 |
| abstract_inverted_index.proposed | 67, 195, 244 |
| abstract_inverted_index.proposes | 13, 104 |
| abstract_inverted_index.reducing | 249 |
| abstract_inverted_index.scalable | 4, 16, 114 |
| abstract_inverted_index.Different | 0 |
| abstract_inverted_index.Embedding | 191 |
| abstract_inverted_index.ImageNet, | 241 |
| abstract_inverted_index.Knowledge | 190 |
| abstract_inverted_index.Moreover, | 59, 205 |
| abstract_inverted_index.algorithm | 246 |
| abstract_inverted_index.candidate | 222 |
| abstract_inverted_index.developed | 112 |
| abstract_inverted_index.diversity | 85 |
| abstract_inverted_index.efficient | 57 |
| abstract_inverted_index.embedding | 65, 97, 215 |
| abstract_inverted_index.knowledge | 64, 96, 199, 214, 223 |
| abstract_inverted_index.topology. | 76 |
| abstract_inverted_index.drawbacks: | 81 |
| abstract_inverted_index.efficiency | 37, 266 |
| abstract_inverted_index.embeddings | 200 |
| abstract_inverted_index.extraction | 145 |
| abstract_inverted_index.parameters | 251 |
| abstract_inverted_index.topologies | 42 |
| abstract_inverted_index.approaches, | 7 |
| abstract_inverted_index.appropriate | 198 |
| abstract_inverted_index.consumption | 94 |
| abstract_inverted_index.contributes | 247 |
| abstract_inverted_index.convolution | 21, 47 |
| abstract_inverted_index.embeddings. | 224 |
| abstract_inverted_index.enhancement | 23, 90, 164, 180 |
| abstract_inverted_index.multi-scale | 60, 148, 167 |
| abstract_inverted_index.performance | 71, 121, 234 |
| abstract_inverted_index.Architecture | 10 |
| abstract_inverted_index.Experimental | 225 |
| abstract_inverted_index.architecture | 17, 115, 255 |
| abstract_inverted_index.enhancement, | 150 |
| abstract_inverted_index.improvement. | 38 |
| abstract_inverted_index.insufficient | 83 |
| abstract_inverted_index.performance, | 258 |
| abstract_inverted_index.satisfactory | 257 |
| abstract_inverted_index.Convolutional | 27 |
| abstract_inverted_index.comprehensive | 139 |
| abstract_inverted_index.differentiable | 203 |
| abstract_inverted_index.representation | 84, 140 |
| abstract_inverted_index.state-of-the-art | 265 |
| abstract_inverted_index.architecture-based | 5 |
| abstract_inverted_index.over-parameterized | 213 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |