Stacked ensemble machine learning approach for electroencephalography based major depressive disorder classification using temporal statistics Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/21642583.2024.2427028
Major depressive disorder (MDD) is a serious and widespread mental health condition that remains challenging to diagnose accurately. Traditional psychological assessments, which can be subjective and sometimes unreliable, emphasize the need for more objective diagnostic tools. In this study, we present a machine learning (ML) model designed to diagnose depression by analysing statistical time-domain features extracted from Electroencephalography (EEG) data. The model is built using a stacked ensemble ML approach, incorporating nine-base estimators with various meta-classifiers. Through multiple trials, the model achieved an accuracy of 98.01%, with precision and recall rates of 97.78% and 96.61%, respectively with Adaptive Boosting (AdaBoost) as the meta-classifer. We also investigated the effects of data sampling and the number of base classifiers on the model’s performance. The findings demonstrate that the stacked ensemble approach significantly enhances the accuracy of diagnosing MDD and that the proposed model outperforms the methods used in previous studies. This model offers a promising tool for psychologists and medical professionals to diagnose depression more reliably, potentially leading to better treatment outcomes for those affected by the disorder.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/21642583.2024.2427028
- OA Status
- gold
- Cited By
- 2
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404317782
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404317782Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/21642583.2024.2427028Digital Object Identifier
- Title
-
Stacked ensemble machine learning approach for electroencephalography based major depressive disorder classification using temporal statisticsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-13Full publication date if available
- Authors
-
N. Ahmed, Tejas Kadengodlu Bhat, Omkar S PowarList of authors in order
- Landing page
-
https://doi.org/10.1080/21642583.2024.2427028Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/21642583.2024.2427028Direct OA link when available
- Concepts
-
Ensemble learning, Artificial intelligence, Electroencephalography, Machine learning, Pattern recognition (psychology), Statistics, Computer science, Psychology, Mathematics, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404317782 |
|---|---|
| doi | https://doi.org/10.1080/21642583.2024.2427028 |
| ids.doi | https://doi.org/10.1080/21642583.2024.2427028 |
| ids.openalex | https://openalex.org/W4404317782 |
| fwci | 1.40560113 |
| type | article |
| title | Stacked ensemble machine learning approach for electroencephalography based major depressive disorder classification using temporal statistics |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T13283 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3205 |
| topics[2].subfield.display_name | Experimental and Cognitive Psychology |
| topics[2].display_name | Mental Health Research Topics |
| is_xpac | False |
| apc_list.value | 950 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1165 |
| apc_paid.value | 950 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1165 |
| concepts[0].id | https://openalex.org/C45942800 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7105047106742859 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[0].display_name | Ensemble learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6130757331848145 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6042274236679077 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.47817808389663696 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45738664269447327 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42706581950187683 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.42488011717796326 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C15744967 |
| concepts[7].level | 0 |
| concepts[7].score | 0.38564375042915344 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[7].display_name | Psychology |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3011918067932129 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C118552586 |
| concepts[9].level | 1 |
| concepts[9].score | 0.10077130794525146 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[9].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/ensemble-learning |
| keywords[0].score | 0.7105047106742859 |
| keywords[0].display_name | Ensemble learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6130757331848145 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.6042274236679077 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.47817808389663696 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.45738664269447327 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.42706581950187683 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.42488011717796326 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/psychology |
| keywords[7].score | 0.38564375042915344 |
| keywords[7].display_name | Psychology |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.3011918067932129 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/psychiatry |
| keywords[9].score | 0.10077130794525146 |
| keywords[9].display_name | Psychiatry |
| language | en |
| locations[0].id | doi:10.1080/21642583.2024.2427028 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2506060491 |
| locations[0].source.issn | 2164-2583 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2164-2583 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Systems Science & Control Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Systems Science & Control Engineering |
| locations[0].landing_page_url | https://doi.org/10.1080/21642583.2024.2427028 |
| locations[1].id | pmh:oai:doaj.org/article:e15469f8f0534d13a616ebceca4eae5c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Systems Science & Control Engineering, Vol 12, Iss 1 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e15469f8f0534d13a616ebceca4eae5c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5063287953 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3049-0998 |
| authorships[0].author.display_name | N. Ahmed |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[0].institutions[0].id | https://openalex.org/I164861460 |
| authorships[0].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nader Nisar Ahmed |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[1].author.id | https://openalex.org/A5113152698 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Tejas Kadengodlu Bhat |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[1].institutions[0].id | https://openalex.org/I164861460 |
| authorships[1].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tejas Kadengodlu Bhat |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[2].author.id | https://openalex.org/A5013642040 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4646-8787 |
| authorships[2].author.display_name | Omkar S Powar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I164861460 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| authorships[2].institutions[0].id | https://openalex.org/I164861460 |
| authorships[2].institutions[0].ror | https://ror.org/02xzytt36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I164861460 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Manipal Academy of Higher Education |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Omkar S. Powar |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/21642583.2024.2427028 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stacked ensemble machine learning approach for electroencephalography based major depressive disorder classification using temporal statistics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W4376643315, https://openalex.org/W4324137541, https://openalex.org/W2900445707, https://openalex.org/W4285741730, https://openalex.org/W1191482210, https://openalex.org/W4285046548, https://openalex.org/W4210302090, https://openalex.org/W3092276832, https://openalex.org/W4375951447 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/21642583.2024.2427028 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2506060491 |
| best_oa_location.source.issn | 2164-2583 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2164-2583 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Systems Science & Control Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Systems Science & Control Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1080/21642583.2024.2427028 |
| primary_location.id | doi:10.1080/21642583.2024.2427028 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2506060491 |
| primary_location.source.issn | 2164-2583 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2164-2583 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Systems Science & Control Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Systems Science & Control Engineering |
| primary_location.landing_page_url | https://doi.org/10.1080/21642583.2024.2427028 |
| publication_date | 2024-11-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3196512869, https://openalex.org/W3139017962, https://openalex.org/W4246413330, https://openalex.org/W3215443917, https://openalex.org/W2788029111, https://openalex.org/W1997731668, https://openalex.org/W2904279105, https://openalex.org/W3105495164, https://openalex.org/W2964546587, https://openalex.org/W6686910492, https://openalex.org/W2914647584, https://openalex.org/W2135595031, https://openalex.org/W67460294, https://openalex.org/W2061018891, https://openalex.org/W1980553000, https://openalex.org/W3208222952, https://openalex.org/W4313463492, https://openalex.org/W4381950909, https://openalex.org/W4385376417, https://openalex.org/W3007593444, https://openalex.org/W4200029516, https://openalex.org/W4377021644, https://openalex.org/W4200457932, https://openalex.org/W4380591156, https://openalex.org/W4393899686, https://openalex.org/W4280533611, https://openalex.org/W4200073432, https://openalex.org/W2975758053, https://openalex.org/W2110527401, https://openalex.org/W3043456897, https://openalex.org/W3044957499, https://openalex.org/W4388936557, https://openalex.org/W4205256556, https://openalex.org/W3121117531, https://openalex.org/W3207305741, https://openalex.org/W1973863099, https://openalex.org/W1999656412, https://openalex.org/W3094097183, https://openalex.org/W4284962373, https://openalex.org/W1506823620, https://openalex.org/W3045258609, https://openalex.org/W4381549141, https://openalex.org/W4391398068, https://openalex.org/W4313312917, https://openalex.org/W4387664545, https://openalex.org/W1488760546, https://openalex.org/W4367163945, https://openalex.org/W7000094761, https://openalex.org/W4387876924, https://openalex.org/W3129234057, https://openalex.org/W4388304090, https://openalex.org/W3113102112, https://openalex.org/W3019763486, https://openalex.org/W2011349296, https://openalex.org/W2186164097, https://openalex.org/W3102912986, https://openalex.org/W4200351075 |
| referenced_works_count | 57 |
| abstract_inverted_index.a | 5, 41, 65, 151 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.ML | 68 |
| abstract_inverted_index.We | 103 |
| abstract_inverted_index.an | 82 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.be | 23 |
| abstract_inverted_index.by | 50, 173 |
| abstract_inverted_index.in | 145 |
| abstract_inverted_index.is | 4, 62 |
| abstract_inverted_index.of | 84, 91, 108, 114, 133 |
| abstract_inverted_index.on | 117 |
| abstract_inverted_index.to | 15, 47, 159, 166 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.MDD | 135 |
| abstract_inverted_index.The | 60, 121 |
| abstract_inverted_index.and | 7, 25, 88, 93, 111, 136, 156 |
| abstract_inverted_index.can | 22 |
| abstract_inverted_index.for | 31, 154, 170 |
| abstract_inverted_index.the | 29, 79, 101, 106, 112, 118, 125, 131, 138, 142, 174 |
| abstract_inverted_index.(ML) | 44 |
| abstract_inverted_index.This | 148 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.base | 115 |
| abstract_inverted_index.data | 109 |
| abstract_inverted_index.from | 56 |
| abstract_inverted_index.more | 32, 162 |
| abstract_inverted_index.need | 30 |
| abstract_inverted_index.that | 12, 124, 137 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.tool | 153 |
| abstract_inverted_index.used | 144 |
| abstract_inverted_index.with | 73, 86, 96 |
| abstract_inverted_index.(EEG) | 58 |
| abstract_inverted_index.(MDD) | 3 |
| abstract_inverted_index.Major | 0 |
| abstract_inverted_index.built | 63 |
| abstract_inverted_index.data. | 59 |
| abstract_inverted_index.model | 45, 61, 80, 140, 149 |
| abstract_inverted_index.rates | 90 |
| abstract_inverted_index.those | 171 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.which | 21 |
| abstract_inverted_index.97.78% | 92 |
| abstract_inverted_index.better | 167 |
| abstract_inverted_index.health | 10 |
| abstract_inverted_index.mental | 9 |
| abstract_inverted_index.number | 113 |
| abstract_inverted_index.offers | 150 |
| abstract_inverted_index.recall | 89 |
| abstract_inverted_index.study, | 38 |
| abstract_inverted_index.tools. | 35 |
| abstract_inverted_index.96.61%, | 94 |
| abstract_inverted_index.98.01%, | 85 |
| abstract_inverted_index.Through | 76 |
| abstract_inverted_index.effects | 107 |
| abstract_inverted_index.leading | 165 |
| abstract_inverted_index.machine | 42 |
| abstract_inverted_index.medical | 157 |
| abstract_inverted_index.methods | 143 |
| abstract_inverted_index.present | 40 |
| abstract_inverted_index.remains | 13 |
| abstract_inverted_index.serious | 6 |
| abstract_inverted_index.stacked | 66, 126 |
| abstract_inverted_index.trials, | 78 |
| abstract_inverted_index.various | 74 |
| abstract_inverted_index.Adaptive | 97 |
| abstract_inverted_index.Boosting | 98 |
| abstract_inverted_index.accuracy | 83, 132 |
| abstract_inverted_index.achieved | 81 |
| abstract_inverted_index.affected | 172 |
| abstract_inverted_index.approach | 128 |
| abstract_inverted_index.designed | 46 |
| abstract_inverted_index.diagnose | 16, 48, 160 |
| abstract_inverted_index.disorder | 2 |
| abstract_inverted_index.enhances | 130 |
| abstract_inverted_index.ensemble | 67, 127 |
| abstract_inverted_index.features | 54 |
| abstract_inverted_index.findings | 122 |
| abstract_inverted_index.learning | 43 |
| abstract_inverted_index.multiple | 77 |
| abstract_inverted_index.outcomes | 169 |
| abstract_inverted_index.previous | 146 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.sampling | 110 |
| abstract_inverted_index.studies. | 147 |
| abstract_inverted_index.analysing | 51 |
| abstract_inverted_index.approach, | 69 |
| abstract_inverted_index.condition | 11 |
| abstract_inverted_index.disorder. | 175 |
| abstract_inverted_index.emphasize | 28 |
| abstract_inverted_index.extracted | 55 |
| abstract_inverted_index.model’s | 119 |
| abstract_inverted_index.nine-base | 71 |
| abstract_inverted_index.objective | 33 |
| abstract_inverted_index.precision | 87 |
| abstract_inverted_index.promising | 152 |
| abstract_inverted_index.reliably, | 163 |
| abstract_inverted_index.sometimes | 26 |
| abstract_inverted_index.treatment | 168 |
| abstract_inverted_index.(AdaBoost) | 99 |
| abstract_inverted_index.depression | 49, 161 |
| abstract_inverted_index.depressive | 1 |
| abstract_inverted_index.diagnosing | 134 |
| abstract_inverted_index.diagnostic | 34 |
| abstract_inverted_index.estimators | 72 |
| abstract_inverted_index.subjective | 24 |
| abstract_inverted_index.widespread | 8 |
| abstract_inverted_index.Traditional | 18 |
| abstract_inverted_index.accurately. | 17 |
| abstract_inverted_index.challenging | 14 |
| abstract_inverted_index.classifiers | 116 |
| abstract_inverted_index.demonstrate | 123 |
| abstract_inverted_index.outperforms | 141 |
| abstract_inverted_index.potentially | 164 |
| abstract_inverted_index.statistical | 52 |
| abstract_inverted_index.time-domain | 53 |
| abstract_inverted_index.unreliable, | 27 |
| abstract_inverted_index.assessments, | 20 |
| abstract_inverted_index.investigated | 105 |
| abstract_inverted_index.performance. | 120 |
| abstract_inverted_index.respectively | 95 |
| abstract_inverted_index.incorporating | 70 |
| abstract_inverted_index.professionals | 158 |
| abstract_inverted_index.psychological | 19 |
| abstract_inverted_index.psychologists | 155 |
| abstract_inverted_index.significantly | 129 |
| abstract_inverted_index.meta-classifer. | 102 |
| abstract_inverted_index.meta-classifiers. | 75 |
| abstract_inverted_index.Electroencephalography | 57 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5013642040 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I164861460 |
| citation_normalized_percentile.value | 0.75800443 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |