State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22207835
Battery state of health (SOH) estimating is essential for the safety and preservation of electric vehicles. The degradation mechanism of batteries under different aging conditions has attracted considerable attention in SOH prediction. In this article, the discharge voltage curve early in the cycle is considered to be strongly characteristic during cell aging. Therefore, the battery aging state can be quantitatively characterized by an incremental capacity analysis (ICA) of the voltage distribution. Due to the interference of vibration noise of the test platform, the discrete wavelet transform (DWT) methods are accustomed to soften the premier incremental capacity curves in different hierarchical decompositions. By analyzing the battery aging mechanism, the peak of the curve and its corresponding voltage are used in the characterization of capacity decay by grey relation analysis (GRA) and to optimize the input of the deep learning model, and finally, the double-layer long short-term memory network (LSTM) model is used to train the data. The results demonstrate that the proposed model can predict the SOH of a single battery cycle using only small batch data and the relative error is less than 2%. Further, by freezing the LSTM layer for transfer learning, it can be used for battery health estimation in different loading modes. The results of training and verification show that this method has high accuracy and reliability in SOH estimation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22207835
- https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761
- OA Status
- gold
- Cited By
- 26
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4306399440
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4306399440Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22207835Digital Object Identifier
- Title
-
State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-15Full publication date if available
- Authors
-
Lei Yao, Jishu Wen, Shiming Xu, Jie Zheng, Junjian Hou, Zhanpeng Fang, Yanqiu XiaoList of authors in order
- Landing page
-
https://doi.org/10.3390/s22207835Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761Direct OA link when available
- Concepts
-
Battery (electricity), State of health, Computer science, Noise (video), Voltage, Reliability (semiconductor), Artificial neural network, Control theory (sociology), Interference (communication), Battery capacity, Artificial intelligence, Algorithm, Engineering, Channel (broadcasting), Power (physics), Telecommunications, Electrical engineering, Physics, Quantum mechanics, Control (management), Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 10, 2023: 7Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4306399440 |
|---|---|
| doi | https://doi.org/10.3390/s22207835 |
| ids.doi | https://doi.org/10.3390/s22207835 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36298185 |
| ids.openalex | https://openalex.org/W4306399440 |
| fwci | 2.59883876 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D015203 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Reproducibility of Results |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008570 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Memory, Short-Term |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011211 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Electric Power Supplies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D058067 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Wavelet Analysis |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D015203 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Reproducibility of Results |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008570 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Memory, Short-Term |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D011211 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Electric Power Supplies |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D058067 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Wavelet Analysis |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015203 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Reproducibility of Results |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011211 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Electric Power Supplies |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D058067 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Wavelet Analysis |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D016571 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Neural Networks, Computer |
| type | article |
| title | State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning |
| biblio.issue | 20 |
| biblio.volume | 22 |
| biblio.last_page | 7835 |
| biblio.first_page | 7835 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10018 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Battery Materials |
| topics[2].id | https://openalex.org/T10768 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9797000288963318 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electric Vehicles and Infrastructure |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C555008776 |
| concepts[0].level | 3 |
| concepts[0].score | 0.696373462677002 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[0].display_name | Battery (electricity) |
| concepts[1].id | https://openalex.org/C2777294910 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6297258734703064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4050070 |
| concepts[1].display_name | State of health |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5301327109336853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5146825909614563 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C165801399 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5143247842788696 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[4].display_name | Voltage |
| concepts[5].id | https://openalex.org/C43214815 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5129098892211914 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7310987 |
| concepts[5].display_name | Reliability (semiconductor) |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4740954339504242 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C47446073 |
| concepts[7].level | 3 |
| concepts[7].score | 0.45428940653800964 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[7].display_name | Control theory (sociology) |
| concepts[8].id | https://openalex.org/C32022120 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4415634274482727 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[8].display_name | Interference (communication) |
| concepts[9].id | https://openalex.org/C2989104859 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4159088134765625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[9].display_name | Battery capacity |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3990539610385895 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.34702324867248535 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2762639820575714 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C127162648 |
| concepts[13].level | 2 |
| concepts[13].score | 0.22198116779327393 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[13].display_name | Channel (broadcasting) |
| concepts[14].id | https://openalex.org/C163258240 |
| concepts[14].level | 2 |
| concepts[14].score | 0.12346082925796509 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[14].display_name | Power (physics) |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.11102119088172913 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1071782112121582 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C2775924081 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[19].display_name | Control (management) |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/battery |
| keywords[0].score | 0.696373462677002 |
| keywords[0].display_name | Battery (electricity) |
| keywords[1].id | https://openalex.org/keywords/state-of-health |
| keywords[1].score | 0.6297258734703064 |
| keywords[1].display_name | State of health |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5301327109336853 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.5146825909614563 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/voltage |
| keywords[4].score | 0.5143247842788696 |
| keywords[4].display_name | Voltage |
| keywords[5].id | https://openalex.org/keywords/reliability |
| keywords[5].score | 0.5129098892211914 |
| keywords[5].display_name | Reliability (semiconductor) |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4740954339504242 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/control-theory |
| keywords[7].score | 0.45428940653800964 |
| keywords[7].display_name | Control theory (sociology) |
| keywords[8].id | https://openalex.org/keywords/interference |
| keywords[8].score | 0.4415634274482727 |
| keywords[8].display_name | Interference (communication) |
| keywords[9].id | https://openalex.org/keywords/battery-capacity |
| keywords[9].score | 0.4159088134765625 |
| keywords[9].display_name | Battery capacity |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3990539610385895 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.34702324867248535 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.2762639820575714 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/channel |
| keywords[13].score | 0.22198116779327393 |
| keywords[13].display_name | Channel (broadcasting) |
| keywords[14].id | https://openalex.org/keywords/power |
| keywords[14].score | 0.12346082925796509 |
| keywords[14].display_name | Power (physics) |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.11102119088172913 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/electrical-engineering |
| keywords[16].score | 0.1071782112121582 |
| keywords[16].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.3390/s22207835 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22207835 |
| locations[1].id | pmid:36298185 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36298185 |
| locations[2].id | pmh:oai:doaj.org/article:062afee671404f5daf9a792dd957e27c |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 20, p 7835 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/062afee671404f5daf9a792dd957e27c |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/20/7835/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 20; Pages: 7835 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22207835 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9606980 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9606980 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101659034 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3507-8209 |
| authorships[0].author.display_name | Lei Yao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[0].affiliations[0].raw_affiliation_string | Henan Engineering Research Center of New Energy Vehicle Lightweight Design and Manufacturing, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[0].institutions[0].id | https://openalex.org/I23171815 |
| authorships[0].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Yao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Henan Engineering Research Center of New Energy Vehicle Lightweight Design and Manufacturing, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[1].author.id | https://openalex.org/A5068940562 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3329-7819 |
| authorships[1].author.display_name | Jishu Wen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[1].affiliations[0].raw_affiliation_string | Henan Engineering Research Center of New Energy Vehicle Lightweight Design and Manufacturing, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[1].institutions[0].id | https://openalex.org/I23171815 |
| authorships[1].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jishu Wen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Henan Engineering Research Center of New Energy Vehicle Lightweight Design and Manufacturing, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[2].author.id | https://openalex.org/A5000882888 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5295-4282 |
| authorships[2].author.display_name | Shiming Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[2].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[2].institutions[0].id | https://openalex.org/I23171815 |
| authorships[2].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shiming Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[3].author.id | https://openalex.org/A5075537674 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2973-1451 |
| authorships[3].author.display_name | Jie Zheng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[3].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[3].institutions[0].id | https://openalex.org/I23171815 |
| authorships[3].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jie Zheng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[4].author.id | https://openalex.org/A5063985744 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2468-7436 |
| authorships[4].author.display_name | Junjian Hou |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[4].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[4].institutions[0].id | https://openalex.org/I23171815 |
| authorships[4].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Junjian Hou |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[5].author.id | https://openalex.org/A5061886795 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1254-0891 |
| authorships[5].author.display_name | Zhanpeng Fang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[5].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[5].institutions[0].id | https://openalex.org/I23171815 |
| authorships[5].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhanpeng Fang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[6].author.id | https://openalex.org/A5075813581 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9215-0537 |
| authorships[6].author.display_name | Yanqiu Xiao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[6].affiliations[0].raw_affiliation_string | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| authorships[6].institutions[0].id | https://openalex.org/I23171815 |
| authorships[6].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yanqiu Xiao |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450001, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | State of Health Estimation Based on the Long Short-Term Memory Network Using Incremental Capacity and Transfer Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2991588090, https://openalex.org/W3213052590, https://openalex.org/W2995074223, https://openalex.org/W176011693, https://openalex.org/W2068485218, https://openalex.org/W4376058722, https://openalex.org/W3034877844, https://openalex.org/W4225996487, https://openalex.org/W4200404188, https://openalex.org/W4308964873 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22207835 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22207835 |
| primary_location.id | doi:10.3390/s22207835 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/20/7835/pdf?version=1666679761 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22207835 |
| publication_date | 2022-10-15 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3111896817, https://openalex.org/W4224030340, https://openalex.org/W2988649691, https://openalex.org/W2334417208, https://openalex.org/W2610548161, https://openalex.org/W3108279751, https://openalex.org/W1956809052, https://openalex.org/W2944632484, https://openalex.org/W2890169947, https://openalex.org/W2892094861, https://openalex.org/W2165398473, https://openalex.org/W2166618387, https://openalex.org/W3040147289, https://openalex.org/W4210477395, https://openalex.org/W3194676480, https://openalex.org/W6652016346, https://openalex.org/W3118760717, https://openalex.org/W2966676365, https://openalex.org/W3092002927, https://openalex.org/W2798938206, https://openalex.org/W2088924893, https://openalex.org/W2791067576, https://openalex.org/W2165344987, https://openalex.org/W3185125810, https://openalex.org/W2974625411, https://openalex.org/W2023670992, https://openalex.org/W2056976651, https://openalex.org/W2979531437, https://openalex.org/W2621182245, https://openalex.org/W3142230727, https://openalex.org/W3179571438, https://openalex.org/W2911341021, https://openalex.org/W3033088344, https://openalex.org/W4210776654, https://openalex.org/W3197551989, https://openalex.org/W3100919956, https://openalex.org/W3202098842, https://openalex.org/W3047827241, https://openalex.org/W4240485910, https://openalex.org/W2983064028, https://openalex.org/W4210592941, https://openalex.org/W2005187720 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 167 |
| abstract_inverted_index.By | 101 |
| abstract_inverted_index.In | 32 |
| abstract_inverted_index.an | 62 |
| abstract_inverted_index.be | 46, 58, 195 |
| abstract_inverted_index.by | 61, 124, 185 |
| abstract_inverted_index.in | 29, 40, 97, 118, 201, 220 |
| abstract_inverted_index.is | 6, 43, 149, 180 |
| abstract_inverted_index.it | 193 |
| abstract_inverted_index.of | 2, 13, 19, 67, 75, 78, 109, 121, 134, 166, 207 |
| abstract_inverted_index.to | 45, 72, 90, 130, 151 |
| abstract_inverted_index.2%. | 183 |
| abstract_inverted_index.Due | 71 |
| abstract_inverted_index.SOH | 30, 165, 221 |
| abstract_inverted_index.The | 16, 155, 205 |
| abstract_inverted_index.and | 11, 112, 129, 139, 176, 209, 218 |
| abstract_inverted_index.are | 88, 116 |
| abstract_inverted_index.can | 57, 162, 194 |
| abstract_inverted_index.for | 8, 190, 197 |
| abstract_inverted_index.has | 25, 215 |
| abstract_inverted_index.its | 113 |
| abstract_inverted_index.the | 9, 35, 41, 53, 68, 73, 79, 82, 92, 103, 107, 110, 119, 132, 135, 141, 153, 159, 164, 177, 187 |
| abstract_inverted_index.LSTM | 188 |
| abstract_inverted_index.cell | 50 |
| abstract_inverted_index.data | 175 |
| abstract_inverted_index.deep | 136 |
| abstract_inverted_index.grey | 125 |
| abstract_inverted_index.high | 216 |
| abstract_inverted_index.less | 181 |
| abstract_inverted_index.long | 143 |
| abstract_inverted_index.only | 172 |
| abstract_inverted_index.peak | 108 |
| abstract_inverted_index.show | 211 |
| abstract_inverted_index.test | 80 |
| abstract_inverted_index.than | 182 |
| abstract_inverted_index.that | 158, 212 |
| abstract_inverted_index.this | 33, 213 |
| abstract_inverted_index.used | 117, 150, 196 |
| abstract_inverted_index.(DWT) | 86 |
| abstract_inverted_index.(GRA) | 128 |
| abstract_inverted_index.(ICA) | 66 |
| abstract_inverted_index.(SOH) | 4 |
| abstract_inverted_index.aging | 23, 55, 105 |
| abstract_inverted_index.batch | 174 |
| abstract_inverted_index.curve | 38, 111 |
| abstract_inverted_index.cycle | 42, 170 |
| abstract_inverted_index.data. | 154 |
| abstract_inverted_index.decay | 123 |
| abstract_inverted_index.early | 39 |
| abstract_inverted_index.error | 179 |
| abstract_inverted_index.input | 133 |
| abstract_inverted_index.layer | 189 |
| abstract_inverted_index.model | 148, 161 |
| abstract_inverted_index.noise | 77 |
| abstract_inverted_index.small | 173 |
| abstract_inverted_index.state | 1, 56 |
| abstract_inverted_index.train | 152 |
| abstract_inverted_index.under | 21 |
| abstract_inverted_index.using | 171 |
| abstract_inverted_index.(LSTM) | 147 |
| abstract_inverted_index.aging. | 51 |
| abstract_inverted_index.curves | 96 |
| abstract_inverted_index.during | 49 |
| abstract_inverted_index.health | 3, 199 |
| abstract_inverted_index.memory | 145 |
| abstract_inverted_index.method | 214 |
| abstract_inverted_index.model, | 138 |
| abstract_inverted_index.modes. | 204 |
| abstract_inverted_index.safety | 10 |
| abstract_inverted_index.single | 168 |
| abstract_inverted_index.soften | 91 |
| abstract_inverted_index.Battery | 0 |
| abstract_inverted_index.battery | 54, 104, 169, 198 |
| abstract_inverted_index.loading | 203 |
| abstract_inverted_index.methods | 87 |
| abstract_inverted_index.network | 146 |
| abstract_inverted_index.predict | 163 |
| abstract_inverted_index.premier | 93 |
| abstract_inverted_index.results | 156, 206 |
| abstract_inverted_index.voltage | 37, 69, 115 |
| abstract_inverted_index.wavelet | 84 |
| abstract_inverted_index.Further, | 184 |
| abstract_inverted_index.accuracy | 217 |
| abstract_inverted_index.analysis | 65, 127 |
| abstract_inverted_index.article, | 34 |
| abstract_inverted_index.capacity | 64, 95, 122 |
| abstract_inverted_index.discrete | 83 |
| abstract_inverted_index.electric | 14 |
| abstract_inverted_index.finally, | 140 |
| abstract_inverted_index.freezing | 186 |
| abstract_inverted_index.learning | 137 |
| abstract_inverted_index.optimize | 131 |
| abstract_inverted_index.proposed | 160 |
| abstract_inverted_index.relation | 126 |
| abstract_inverted_index.relative | 178 |
| abstract_inverted_index.strongly | 47 |
| abstract_inverted_index.training | 208 |
| abstract_inverted_index.transfer | 191 |
| abstract_inverted_index.analyzing | 102 |
| abstract_inverted_index.attention | 28 |
| abstract_inverted_index.attracted | 26 |
| abstract_inverted_index.batteries | 20 |
| abstract_inverted_index.different | 22, 98, 202 |
| abstract_inverted_index.discharge | 36 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.learning, | 192 |
| abstract_inverted_index.mechanism | 18 |
| abstract_inverted_index.platform, | 81 |
| abstract_inverted_index.transform | 85 |
| abstract_inverted_index.vehicles. | 15 |
| abstract_inverted_index.vibration | 76 |
| abstract_inverted_index.Therefore, | 52 |
| abstract_inverted_index.accustomed | 89 |
| abstract_inverted_index.conditions | 24 |
| abstract_inverted_index.considered | 44 |
| abstract_inverted_index.estimating | 5 |
| abstract_inverted_index.estimation | 200 |
| abstract_inverted_index.mechanism, | 106 |
| abstract_inverted_index.short-term | 144 |
| abstract_inverted_index.degradation | 17 |
| abstract_inverted_index.demonstrate | 157 |
| abstract_inverted_index.estimation. | 222 |
| abstract_inverted_index.incremental | 63, 94 |
| abstract_inverted_index.prediction. | 31 |
| abstract_inverted_index.reliability | 219 |
| abstract_inverted_index.considerable | 27 |
| abstract_inverted_index.double-layer | 142 |
| abstract_inverted_index.hierarchical | 99 |
| abstract_inverted_index.interference | 74 |
| abstract_inverted_index.preservation | 12 |
| abstract_inverted_index.verification | 210 |
| abstract_inverted_index.characterized | 60 |
| abstract_inverted_index.corresponding | 114 |
| abstract_inverted_index.distribution. | 70 |
| abstract_inverted_index.characteristic | 48 |
| abstract_inverted_index.quantitatively | 59 |
| abstract_inverted_index.decompositions. | 100 |
| abstract_inverted_index.characterization | 120 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5075813581 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I23171815 |
| citation_normalized_percentile.value | 0.86998654 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |