Statistical Analysis of Fuzzy Linear Regression Model Based on Different Distances Article Swipe
Jing Zeng
,
Aiwu Zhang
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5121/ijfls.2018.8201
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.5121/ijfls.2018.8201
Using fuzzy linear regression model, the least squares estimation for linear regression (LR) fuzzy number is studied by Euclidean distance, Y-K distance and k D distance respectively.It is concluded that the three different distances have the same coefficient of the least squares estimation.The data simulation shows the correctness of this conclusion.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5121/ijfls.2018.8201
- https://doi.org/10.5121/ijfls.2018.8201
- OA Status
- diamond
- Cited By
- 2
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2802324961
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2802324961Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5121/ijfls.2018.8201Digital Object Identifier
- Title
-
Statistical Analysis of Fuzzy Linear Regression Model Based on Different DistancesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-04-30Full publication date if available
- Authors
-
Jing Zeng, Aiwu ZhangList of authors in order
- Landing page
-
https://doi.org/10.5121/ijfls.2018.8201Publisher landing page
- PDF URL
-
https://doi.org/10.5121/ijfls.2018.8201Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5121/ijfls.2018.8201Direct OA link when available
- Concepts
-
Statistics, Linear regression, Proper linear model, Regression analysis, Mathematics, Fuzzy logic, Regression, Linear model, Computer science, Artificial intelligence, Polynomial regressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2802324961 |
|---|---|
| doi | https://doi.org/10.5121/ijfls.2018.8201 |
| ids.doi | https://doi.org/10.5121/ijfls.2018.8201 |
| ids.mag | 2802324961 |
| ids.openalex | https://openalex.org/W2802324961 |
| fwci | 0.0 |
| type | article |
| title | Statistical Analysis of Fuzzy Linear Regression Model Based on Different Distances |
| biblio.issue | 1/2 |
| biblio.volume | 8 |
| biblio.last_page | 13 |
| biblio.first_page | 01 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7746999859809875 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T12135 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.7372999787330627 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Fuzzy Systems and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C105795698 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5991801023483276 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[0].display_name | Statistics |
| concepts[1].id | https://openalex.org/C48921125 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5744283199310303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[1].display_name | Linear regression |
| concepts[2].id | https://openalex.org/C32224588 |
| concepts[2].level | 4 |
| concepts[2].score | 0.536791205406189 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7250175 |
| concepts[2].display_name | Proper linear model |
| concepts[3].id | https://openalex.org/C152877465 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5339494943618774 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[3].display_name | Regression analysis |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47846221923828125 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C58166 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4516318738460541 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[5].display_name | Fuzzy logic |
| concepts[6].id | https://openalex.org/C83546350 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41905486583709717 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[6].display_name | Regression |
| concepts[7].id | https://openalex.org/C163175372 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41072142124176025 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3339222 |
| concepts[7].display_name | Linear model |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.37702488899230957 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3056791126728058 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C120068334 |
| concepts[10].level | 3 |
| concepts[10].score | 0.28365734219551086 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q45343 |
| concepts[10].display_name | Polynomial regression |
| keywords[0].id | https://openalex.org/keywords/statistics |
| keywords[0].score | 0.5991801023483276 |
| keywords[0].display_name | Statistics |
| keywords[1].id | https://openalex.org/keywords/linear-regression |
| keywords[1].score | 0.5744283199310303 |
| keywords[1].display_name | Linear regression |
| keywords[2].id | https://openalex.org/keywords/proper-linear-model |
| keywords[2].score | 0.536791205406189 |
| keywords[2].display_name | Proper linear model |
| keywords[3].id | https://openalex.org/keywords/regression-analysis |
| keywords[3].score | 0.5339494943618774 |
| keywords[3].display_name | Regression analysis |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.47846221923828125 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[5].score | 0.4516318738460541 |
| keywords[5].display_name | Fuzzy logic |
| keywords[6].id | https://openalex.org/keywords/regression |
| keywords[6].score | 0.41905486583709717 |
| keywords[6].display_name | Regression |
| keywords[7].id | https://openalex.org/keywords/linear-model |
| keywords[7].score | 0.41072142124176025 |
| keywords[7].display_name | Linear model |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.37702488899230957 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3056791126728058 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/polynomial-regression |
| keywords[10].score | 0.28365734219551086 |
| keywords[10].display_name | Polynomial regression |
| language | en |
| locations[0].id | doi:10.5121/ijfls.2018.8201 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210235692 |
| locations[0].source.issn | 1839-6283 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1839-6283 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Fuzzy Logic Systems |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5121/ijfls.2018.8201 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Fuzzy Logic Systems |
| locations[0].landing_page_url | https://doi.org/10.5121/ijfls.2018.8201 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100747916 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4100-5869 |
| authorships[0].author.display_name | Jing Zeng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210141689 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics , Yancheng Teachers University, Yancheng, P.R.China |
| authorships[0].institutions[0].id | https://openalex.org/I4210141689 |
| authorships[0].institutions[0].ror | https://ror.org/042k5fe81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210141689 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yancheng Teachers University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Zeng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematics and Statistics , Yancheng Teachers University, Yancheng, P.R.China |
| authorships[1].author.id | https://openalex.org/A5101859157 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2149-202X |
| authorships[1].author.display_name | Aiwu Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210141689 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics , Yancheng Teachers University, Yancheng, P.R.China |
| authorships[1].institutions[0].id | https://openalex.org/I4210141689 |
| authorships[1].institutions[0].ror | https://ror.org/042k5fe81 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210141689 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yancheng Teachers University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Aiwu Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics and Statistics , Yancheng Teachers University, Yancheng, P.R.China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5121/ijfls.2018.8201 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Statistical Analysis of Fuzzy Linear Regression Model Based on Different Distances |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7746999859809875 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W3093365844, https://openalex.org/W4311364185, https://openalex.org/W2379898021, https://openalex.org/W4309298396, https://openalex.org/W1519288722, https://openalex.org/W267133670, https://openalex.org/W2376794814, https://openalex.org/W4226066678, https://openalex.org/W3216594821, https://openalex.org/W2359727656 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5121/ijfls.2018.8201 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210235692 |
| best_oa_location.source.issn | 1839-6283 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1839-6283 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Fuzzy Logic Systems |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5121/ijfls.2018.8201 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Fuzzy Logic Systems |
| best_oa_location.landing_page_url | https://doi.org/10.5121/ijfls.2018.8201 |
| primary_location.id | doi:10.5121/ijfls.2018.8201 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210235692 |
| primary_location.source.issn | 1839-6283 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1839-6283 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Fuzzy Logic Systems |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5121/ijfls.2018.8201 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Fuzzy Logic Systems |
| primary_location.landing_page_url | https://doi.org/10.5121/ijfls.2018.8201 |
| publication_date | 2018-04-30 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1966580882, https://openalex.org/W2330022088, https://openalex.org/W2029336792, https://openalex.org/W2057683820, https://openalex.org/W4300491437, https://openalex.org/W4254730433, https://openalex.org/W2022345854, https://openalex.org/W1976662149, https://openalex.org/W1968880195, https://openalex.org/W1558429222 |
| referenced_works_count | 10 |
| abstract_inverted_index.D | 24 |
| abstract_inverted_index.k | 23 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.is | 15, 27 |
| abstract_inverted_index.of | 38, 48 |
| abstract_inverted_index.Y-K | 20 |
| abstract_inverted_index.and | 22 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.the | 5, 30, 35, 39, 46 |
| abstract_inverted_index.(LR) | 12 |
| abstract_inverted_index.data | 43 |
| abstract_inverted_index.have | 34 |
| abstract_inverted_index.same | 36 |
| abstract_inverted_index.that | 29 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.Using | 0 |
| abstract_inverted_index.fuzzy | 1, 13 |
| abstract_inverted_index.least | 6, 40 |
| abstract_inverted_index.shows | 45 |
| abstract_inverted_index.three | 31 |
| abstract_inverted_index.linear | 2, 10 |
| abstract_inverted_index.model, | 4 |
| abstract_inverted_index.number | 14 |
| abstract_inverted_index.squares | 7, 41 |
| abstract_inverted_index.studied | 16 |
| abstract_inverted_index.distance | 21, 25 |
| abstract_inverted_index.Euclidean | 18 |
| abstract_inverted_index.concluded | 28 |
| abstract_inverted_index.different | 32 |
| abstract_inverted_index.distance, | 19 |
| abstract_inverted_index.distances | 33 |
| abstract_inverted_index.estimation | 8 |
| abstract_inverted_index.regression | 3, 11 |
| abstract_inverted_index.simulation | 44 |
| abstract_inverted_index.coefficient | 37 |
| abstract_inverted_index.conclusion. | 50 |
| abstract_inverted_index.correctness | 47 |
| abstract_inverted_index.estimation.The | 42 |
| abstract_inverted_index.respectively.It | 26 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.03784462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |