Statistical challenges in the analysis of sequence and structure data for the COVID-19 spike protein Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2101.02304
As the major target of many vaccines and neutralizing antibodies against SARS-CoV-2, the spike (S) protein is observed to mutate over time. In this paper, we present statistical approaches to tackle some challenges associated with the analysis of S-protein data. We build a Bayesian hierarchical model to study the temporal and spatial evolution of S-protein sequences, after grouping the sequences into representative clusters. We then apply sampling methods to investigate possible changes to the S-protein's 3-D structure as a result of commonly observed mutations. While the increasing spread of D614G variants has been noted in other research, our results also show that the co-occurring mutations of D614G together with S477N or A222V may spread even more rapidly, as quantified by our model estimates.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2101.02304
- https://arxiv.org/pdf/2101.02304
- OA Status
- green
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3120515476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3120515476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2101.02304Digital Object Identifier
- Title
-
Statistical challenges in the analysis of sequence and structure data for the COVID-19 spike proteinWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-06Full publication date if available
- Authors
-
Shiyu He, Samuel W. K. WongList of authors in order
- Landing page
-
https://arxiv.org/abs/2101.02304Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2101.02304Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2101.02304Direct OA link when available
- Concepts
-
Spike Protein, Spike (software development), Coronavirus disease 2019 (COVID-19), Bayesian probability, Computational biology, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 2019-20 coronavirus outbreak, Sequence (biology), Statistical analysis, Biology, Mutation, Computer science, Genetics, Artificial intelligence, Statistics, Virology, Mathematics, Medicine, Gene, Infectious disease (medical specialty), Disease, Outbreak, Pathology, Software engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3120515476 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2101.02304 |
| ids.doi | https://doi.org/10.48550/arxiv.2101.02304 |
| ids.mag | 3120515476 |
| ids.openalex | https://openalex.org/W3120515476 |
| fwci | |
| type | preprint |
| title | Statistical challenges in the analysis of sequence and structure data for the COVID-19 spike protein |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10118 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 and COVID-19 Research |
| topics[1].id | https://openalex.org/T12576 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | vaccines and immunoinformatics approaches |
| topics[2].id | https://openalex.org/T10167 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.989799976348877 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Influenza Virus Research Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2909509916 |
| concepts[0].level | 5 |
| concepts[0].score | 0.6934289336204529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q22329850 |
| concepts[0].display_name | Spike Protein |
| concepts[1].id | https://openalex.org/C2781390188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6722961664199829 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25203449 |
| concepts[1].display_name | Spike (software development) |
| concepts[2].id | https://openalex.org/C3008058167 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6641238927841187 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[2].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5829787254333496 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5437155961990356 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C3007834351 |
| concepts[5].level | 5 |
| concepts[5].score | 0.48440080881118774 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[6].id | https://openalex.org/C3006700255 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4648280143737793 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q81068910 |
| concepts[6].display_name | 2019-20 coronavirus outbreak |
| concepts[7].id | https://openalex.org/C2778112365 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4614642262458801 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[7].display_name | Sequence (biology) |
| concepts[8].id | https://openalex.org/C2986587452 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4288630485534668 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[8].display_name | Statistical analysis |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4274674355983734 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C501734568 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4166058897972107 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42918 |
| concepts[10].display_name | Mutation |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3376882076263428 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.28333133459091187 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.27073830366134644 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.20354607701301575 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C159047783 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18526259064674377 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[15].display_name | Virology |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10709205269813538 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.09109240770339966 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.08437365293502808 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C524204448 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[19].display_name | Infectious disease (medical specialty) |
| concepts[20].id | https://openalex.org/C2779134260 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[20].display_name | Disease |
| concepts[21].id | https://openalex.org/C116675565 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[21].display_name | Outbreak |
| concepts[22].id | https://openalex.org/C142724271 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[22].display_name | Pathology |
| concepts[23].id | https://openalex.org/C115903868 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[23].display_name | Software engineering |
| keywords[0].id | https://openalex.org/keywords/spike-protein |
| keywords[0].score | 0.6934289336204529 |
| keywords[0].display_name | Spike Protein |
| keywords[1].id | https://openalex.org/keywords/spike |
| keywords[1].score | 0.6722961664199829 |
| keywords[1].display_name | Spike (software development) |
| keywords[2].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[2].score | 0.6641238927841187 |
| keywords[2].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5829787254333496 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.5437155961990356 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[5].score | 0.48440080881118774 |
| keywords[5].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[6].id | https://openalex.org/keywords/2019-20-coronavirus-outbreak |
| keywords[6].score | 0.4648280143737793 |
| keywords[6].display_name | 2019-20 coronavirus outbreak |
| keywords[7].id | https://openalex.org/keywords/sequence |
| keywords[7].score | 0.4614642262458801 |
| keywords[7].display_name | Sequence (biology) |
| keywords[8].id | https://openalex.org/keywords/statistical-analysis |
| keywords[8].score | 0.4288630485534668 |
| keywords[8].display_name | Statistical analysis |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.4274674355983734 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/mutation |
| keywords[10].score | 0.4166058897972107 |
| keywords[10].display_name | Mutation |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3376882076263428 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/genetics |
| keywords[12].score | 0.28333133459091187 |
| keywords[12].display_name | Genetics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.27073830366134644 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.20354607701301575 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/virology |
| keywords[15].score | 0.18526259064674377 |
| keywords[15].display_name | Virology |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.10709205269813538 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/medicine |
| keywords[17].score | 0.09109240770339966 |
| keywords[17].display_name | Medicine |
| keywords[18].id | https://openalex.org/keywords/gene |
| keywords[18].score | 0.08437365293502808 |
| keywords[18].display_name | Gene |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2101.02304 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2101.02304 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2101.02304 |
| locations[1].id | doi:10.48550/arxiv.2101.02304 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2101.02304 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102894265 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1397-8126 |
| authorships[0].author.display_name | Shiyu He |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiyu He |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026713161 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7325-7267 |
| authorships[1].author.display_name | Samuel W. K. Wong |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[1].affiliations[0].raw_affiliation_string | University of WAterloo |
| authorships[1].institutions[0].id | https://openalex.org/I151746483 |
| authorships[1].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Waterloo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Samuel W.K. Wong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of WAterloo |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2101.02304 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Statistical challenges in the analysis of sequence and structure data for the COVID-19 spike protein |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10118 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 and COVID-19 Research |
| related_works | https://openalex.org/W3135501652, https://openalex.org/W3207585454, https://openalex.org/W4291000693, https://openalex.org/W4394761436, https://openalex.org/W4243078506, https://openalex.org/W4372292428, https://openalex.org/W3017562527, https://openalex.org/W3022381545, https://openalex.org/W4205815969, https://openalex.org/W3023726384 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2101.02304 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2101.02304 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2101.02304 |
| primary_location.id | pmh:oai:arXiv.org:2101.02304 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2101.02304 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2101.02304 |
| publication_date | 2021-01-06 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2546431897, https://openalex.org/W2158476854, https://openalex.org/W2039465334, https://openalex.org/W2130479394, https://openalex.org/W2122575836, https://openalex.org/W3087924281, https://openalex.org/W3084653951, https://openalex.org/W3199799076, https://openalex.org/W2892117196, https://openalex.org/W2904250115, https://openalex.org/W3010233963, https://openalex.org/W3039901154, https://openalex.org/W3104298728, https://openalex.org/W3044722686, https://openalex.org/W3013348202, https://openalex.org/W2078621233, https://openalex.org/W2016381774, https://openalex.org/W3081555037, https://openalex.org/W1996824979, https://openalex.org/W3007643904, https://openalex.org/W3043431476, https://openalex.org/W95014119, https://openalex.org/W3004280078, https://openalex.org/W3094918064, https://openalex.org/W2144416900, https://openalex.org/W3003217347, https://openalex.org/W3004348779, https://openalex.org/W3088793221, https://openalex.org/W3047785159, https://openalex.org/W2577537660, https://openalex.org/W2040138931, https://openalex.org/W3032355258, https://openalex.org/W3096916367, https://openalex.org/W2131046967, https://openalex.org/W2884424557, https://openalex.org/W3008443627, https://openalex.org/W3004202398 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 42, 78 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 22 |
| abstract_inverted_index.We | 40, 63 |
| abstract_inverted_index.as | 77, 117 |
| abstract_inverted_index.by | 119 |
| abstract_inverted_index.in | 94 |
| abstract_inverted_index.is | 16 |
| abstract_inverted_index.of | 4, 37, 53, 80, 88, 105 |
| abstract_inverted_index.or | 110 |
| abstract_inverted_index.to | 18, 29, 46, 68, 72 |
| abstract_inverted_index.we | 25 |
| abstract_inverted_index.(S) | 14 |
| abstract_inverted_index.3-D | 75 |
| abstract_inverted_index.and | 7, 50 |
| abstract_inverted_index.has | 91 |
| abstract_inverted_index.may | 112 |
| abstract_inverted_index.our | 97, 120 |
| abstract_inverted_index.the | 1, 12, 35, 48, 58, 73, 85, 102 |
| abstract_inverted_index.also | 99 |
| abstract_inverted_index.been | 92 |
| abstract_inverted_index.even | 114 |
| abstract_inverted_index.into | 60 |
| abstract_inverted_index.many | 5 |
| abstract_inverted_index.more | 115 |
| abstract_inverted_index.over | 20 |
| abstract_inverted_index.show | 100 |
| abstract_inverted_index.some | 31 |
| abstract_inverted_index.that | 101 |
| abstract_inverted_index.then | 64 |
| abstract_inverted_index.this | 23 |
| abstract_inverted_index.with | 34, 108 |
| abstract_inverted_index.A222V | 111 |
| abstract_inverted_index.D614G | 89, 106 |
| abstract_inverted_index.S477N | 109 |
| abstract_inverted_index.While | 84 |
| abstract_inverted_index.after | 56 |
| abstract_inverted_index.apply | 65 |
| abstract_inverted_index.build | 41 |
| abstract_inverted_index.data. | 39 |
| abstract_inverted_index.major | 2 |
| abstract_inverted_index.model | 45, 121 |
| abstract_inverted_index.noted | 93 |
| abstract_inverted_index.other | 95 |
| abstract_inverted_index.spike | 13 |
| abstract_inverted_index.study | 47 |
| abstract_inverted_index.time. | 21 |
| abstract_inverted_index.mutate | 19 |
| abstract_inverted_index.paper, | 24 |
| abstract_inverted_index.result | 79 |
| abstract_inverted_index.spread | 87, 113 |
| abstract_inverted_index.tackle | 30 |
| abstract_inverted_index.target | 3 |
| abstract_inverted_index.against | 10 |
| abstract_inverted_index.changes | 71 |
| abstract_inverted_index.methods | 67 |
| abstract_inverted_index.present | 26 |
| abstract_inverted_index.protein | 15 |
| abstract_inverted_index.results | 98 |
| abstract_inverted_index.spatial | 51 |
| abstract_inverted_index.Bayesian | 43 |
| abstract_inverted_index.analysis | 36 |
| abstract_inverted_index.commonly | 81 |
| abstract_inverted_index.grouping | 57 |
| abstract_inverted_index.observed | 17, 82 |
| abstract_inverted_index.possible | 70 |
| abstract_inverted_index.rapidly, | 116 |
| abstract_inverted_index.sampling | 66 |
| abstract_inverted_index.temporal | 49 |
| abstract_inverted_index.together | 107 |
| abstract_inverted_index.vaccines | 6 |
| abstract_inverted_index.variants | 90 |
| abstract_inverted_index.S-protein | 38, 54 |
| abstract_inverted_index.clusters. | 62 |
| abstract_inverted_index.evolution | 52 |
| abstract_inverted_index.mutations | 104 |
| abstract_inverted_index.research, | 96 |
| abstract_inverted_index.sequences | 59 |
| abstract_inverted_index.structure | 76 |
| abstract_inverted_index.antibodies | 9 |
| abstract_inverted_index.approaches | 28 |
| abstract_inverted_index.associated | 33 |
| abstract_inverted_index.challenges | 32 |
| abstract_inverted_index.estimates. | 122 |
| abstract_inverted_index.increasing | 86 |
| abstract_inverted_index.mutations. | 83 |
| abstract_inverted_index.quantified | 118 |
| abstract_inverted_index.sequences, | 55 |
| abstract_inverted_index.S-protein's | 74 |
| abstract_inverted_index.SARS-CoV-2, | 11 |
| abstract_inverted_index.investigate | 69 |
| abstract_inverted_index.statistical | 27 |
| abstract_inverted_index.co-occurring | 103 |
| abstract_inverted_index.hierarchical | 44 |
| abstract_inverted_index.neutralizing | 8 |
| abstract_inverted_index.representative | 61 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |