Statistical missing data interpolation algorithm for water and soil conservation engineering of overhead transmission lines based on time series characteristics and GRU model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1063/5.0290800
The statistical data of water and soil conservation works for overhead transmission lines often suffer from incompleteness due to variations in project scale. To address this data gap, this study proposes an innovative interpolation algorithm that combines time-series characteristics with a Gated Recurrent Unit (GRU) model to accurately estimate missing values in water and soil conservation statistics. The proposed methodology first analyzes the types of statistical data involved and collects multi-source information to construct the initial dataset. The Isolation Forest algorithm is then employed to detect and remove outliers from the raw data during the preprocessing stage. A novel feature extraction approach integrates self-attention mechanisms into convolutional neural networks to effectively identify and focus on crucial temporal patterns. The developed GRU model, trained on these extracted time-series features, generates reliable predictions for missing data points. Experimental results demonstrate the algorithm's effectiveness, achieving an impressive explained variance score of 0.92 and a Pearson correlation coefficient of 0.94 across different missing data rates. This approach not only ensures data completeness and accuracy but also provides a solid foundation for planning and management decisions in water and soil conservation projects for transmission line infrastructure. The successful implementation of this technique offers a robust solution to a persistent challenge in infrastructure monitoring and maintenance data management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0290800
- https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdf
- OA Status
- gold
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414086806
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414086806Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0290800Digital Object Identifier
- Title
-
Statistical missing data interpolation algorithm for water and soil conservation engineering of overhead transmission lines based on time series characteristics and GRU modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-01Full publication date if available
- Authors
-
Zhu Xuemei, Ye Ke, Ying Wang, Jing Yu, Cong ZengList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0290800Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414086806 |
|---|---|
| doi | https://doi.org/10.1063/5.0290800 |
| ids.doi | https://doi.org/10.1063/5.0290800 |
| ids.openalex | https://openalex.org/W4414086806 |
| fwci | 0.0 |
| type | article |
| title | Statistical missing data interpolation algorithm for water and soil conservation engineering of overhead transmission lines based on time series characteristics and GRU model |
| biblio.issue | 9 |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9950000047683716 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11312 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9941999912261963 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Soil Moisture and Remote Sensing |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| language | en |
| locations[0].id | doi:10.1063/5.0290800 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S189917590 |
| locations[0].source.issn | 2158-3226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2158-3226 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIP Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Advances |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0290800 |
| locations[1].id | pmh:oai:doaj.org/article:8d38e458e3dc41f4a239222814f9566b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIP Advances, Vol 15, Iss 9, Pp 095015-095015-11 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/8d38e458e3dc41f4a239222814f9566b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100520908 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-9225-0874 |
| authorships[0].author.display_name | Zhu Xuemei |
| authorships[0].countries | BG |
| authorships[0].affiliations[0].raw_affiliation_string | State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210137797 |
| authorships[0].affiliations[1].raw_affiliation_string | State Grid Fujian Economic Research Institute , Fuzhou 350013, |
| authorships[0].institutions[0].id | https://openalex.org/I4210137797 |
| authorships[0].institutions[0].ror | https://ror.org/03y2be923 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I24768866, https://openalex.org/I4210137797 |
| authorships[0].institutions[0].country_code | BG |
| authorships[0].institutions[0].display_name | Economic Research Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuemei Zhu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Grid Fujian Economic Research Institute , Fuzhou 350013,, State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[1].author.id | https://openalex.org/A5103673023 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ye Ke |
| authorships[1].countries | BG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210137797 |
| authorships[1].affiliations[0].raw_affiliation_string | State Grid Fujian Economic Research Institute , Fuzhou 350013, |
| authorships[1].affiliations[1].raw_affiliation_string | State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210137797 |
| authorships[1].institutions[0].ror | https://ror.org/03y2be923 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I24768866, https://openalex.org/I4210137797 |
| authorships[1].institutions[0].country_code | BG |
| authorships[1].institutions[0].display_name | Economic Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ye Ke |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Grid Fujian Economic Research Institute , Fuzhou 350013,, State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[2].author.id | https://openalex.org/A5100347177 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9498-6426 |
| authorships[2].author.display_name | Ying Wang |
| authorships[2].countries | BG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210137797 |
| authorships[2].affiliations[0].raw_affiliation_string | State Grid Fujian Economic Research Institute , Fuzhou 350013, |
| authorships[2].affiliations[1].raw_affiliation_string | State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210137797 |
| authorships[2].institutions[0].ror | https://ror.org/03y2be923 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I24768866, https://openalex.org/I4210137797 |
| authorships[2].institutions[0].country_code | BG |
| authorships[2].institutions[0].display_name | Economic Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Grid Fujian Economic Research Institute , Fuzhou 350013,, State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[3].author.id | https://openalex.org/A5100962238 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jing Yu |
| authorships[3].countries | BG |
| authorships[3].affiliations[0].raw_affiliation_string | State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210137797 |
| authorships[3].affiliations[1].raw_affiliation_string | State Grid Fujian Economic Research Institute , Fuzhou 350013, |
| authorships[3].institutions[0].id | https://openalex.org/I4210137797 |
| authorships[3].institutions[0].ror | https://ror.org/03y2be923 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I24768866, https://openalex.org/I4210137797 |
| authorships[3].institutions[0].country_code | BG |
| authorships[3].institutions[0].display_name | Economic Research Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jing Yu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Grid Fujian Economic Research Institute , Fuzhou 350013,, State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[4].author.id | https://openalex.org/A5101701544 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9282-5549 |
| authorships[4].author.display_name | Cong Zeng |
| authorships[4].countries | BG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210137797 |
| authorships[4].affiliations[0].raw_affiliation_string | State Grid Fujian Economic Research Institute , Fuzhou 350013, |
| authorships[4].affiliations[1].raw_affiliation_string | State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210137797 |
| authorships[4].institutions[0].ror | https://ror.org/03y2be923 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I24768866, https://openalex.org/I4210137797 |
| authorships[4].institutions[0].country_code | BG |
| authorships[4].institutions[0].display_name | Economic Research Institute |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Cong Zeng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | State Grid Fujian Economic Research Institute , Fuzhou 350013,, State Grid Fujian Economic Research Institute, Fuzhou 350013, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Statistical missing data interpolation algorithm for water and soil conservation engineering of overhead transmission lines based on time series characteristics and GRU model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4380150146, https://openalex.org/W3024870410, https://openalex.org/W2410652950, https://openalex.org/W4283773154, https://openalex.org/W3139174110, https://openalex.org/W4289597203, https://openalex.org/W2085630472, https://openalex.org/W4285201053, https://openalex.org/W2753779043, https://openalex.org/W4385335406 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0290800 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S189917590 |
| best_oa_location.source.issn | 2158-3226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2158-3226 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIP Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0290800 |
| primary_location.id | doi:10.1063/5.0290800 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S189917590 |
| primary_location.source.issn | 2158-3226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2158-3226 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIP Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0290800/20690517/095015_1_5.0290800.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Advances |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0290800 |
| publication_date | 2025-09-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4210668757, https://openalex.org/W4391221471, https://openalex.org/W3206175408, https://openalex.org/W4303446564, https://openalex.org/W3150360154, https://openalex.org/W4313680882, https://openalex.org/W4402491741, https://openalex.org/W4379529434, https://openalex.org/W3089196758, https://openalex.org/W3138515421, https://openalex.org/W3106842161, https://openalex.org/W2984429807, https://openalex.org/W2883350190, https://openalex.org/W4380682304, https://openalex.org/W3186419638, https://openalex.org/W3216909614, https://openalex.org/W3170168031, https://openalex.org/W3213916533, https://openalex.org/W4389335124, https://openalex.org/W3153932301 |
| referenced_works_count | 20 |
| abstract_inverted_index.A | 97 |
| abstract_inverted_index.a | 40, 150, 173, 198, 202 |
| abstract_inverted_index.To | 23 |
| abstract_inverted_index.an | 31, 142 |
| abstract_inverted_index.in | 20, 51, 181, 205 |
| abstract_inverted_index.is | 81 |
| abstract_inverted_index.of | 3, 64, 147, 154, 194 |
| abstract_inverted_index.on | 114, 123 |
| abstract_inverted_index.to | 18, 46, 72, 84, 109, 201 |
| abstract_inverted_index.GRU | 120 |
| abstract_inverted_index.The | 0, 57, 77, 118, 191 |
| abstract_inverted_index.and | 5, 53, 68, 86, 112, 149, 168, 178, 183, 208 |
| abstract_inverted_index.but | 170 |
| abstract_inverted_index.due | 17 |
| abstract_inverted_index.for | 9, 131, 176, 187 |
| abstract_inverted_index.not | 163 |
| abstract_inverted_index.raw | 91 |
| abstract_inverted_index.the | 62, 74, 90, 94, 138 |
| abstract_inverted_index.0.92 | 148 |
| abstract_inverted_index.0.94 | 155 |
| abstract_inverted_index.This | 161 |
| abstract_inverted_index.Unit | 43 |
| abstract_inverted_index.also | 171 |
| abstract_inverted_index.data | 2, 26, 66, 92, 133, 159, 166, 210 |
| abstract_inverted_index.from | 15, 89 |
| abstract_inverted_index.gap, | 27 |
| abstract_inverted_index.into | 105 |
| abstract_inverted_index.line | 189 |
| abstract_inverted_index.only | 164 |
| abstract_inverted_index.soil | 6, 54, 184 |
| abstract_inverted_index.that | 35 |
| abstract_inverted_index.then | 82 |
| abstract_inverted_index.this | 25, 28, 195 |
| abstract_inverted_index.with | 39 |
| abstract_inverted_index.(GRU) | 44 |
| abstract_inverted_index.Gated | 41 |
| abstract_inverted_index.first | 60 |
| abstract_inverted_index.focus | 113 |
| abstract_inverted_index.lines | 12 |
| abstract_inverted_index.model | 45 |
| abstract_inverted_index.novel | 98 |
| abstract_inverted_index.often | 13 |
| abstract_inverted_index.score | 146 |
| abstract_inverted_index.solid | 174 |
| abstract_inverted_index.study | 29 |
| abstract_inverted_index.these | 124 |
| abstract_inverted_index.types | 63 |
| abstract_inverted_index.water | 4, 52, 182 |
| abstract_inverted_index.works | 8 |
| abstract_inverted_index.Forest | 79 |
| abstract_inverted_index.across | 156 |
| abstract_inverted_index.detect | 85 |
| abstract_inverted_index.during | 93 |
| abstract_inverted_index.model, | 121 |
| abstract_inverted_index.neural | 107 |
| abstract_inverted_index.offers | 197 |
| abstract_inverted_index.rates. | 160 |
| abstract_inverted_index.remove | 87 |
| abstract_inverted_index.robust | 199 |
| abstract_inverted_index.scale. | 22 |
| abstract_inverted_index.stage. | 96 |
| abstract_inverted_index.suffer | 14 |
| abstract_inverted_index.values | 50 |
| abstract_inverted_index.Pearson | 151 |
| abstract_inverted_index.address | 24 |
| abstract_inverted_index.crucial | 115 |
| abstract_inverted_index.ensures | 165 |
| abstract_inverted_index.feature | 99 |
| abstract_inverted_index.initial | 75 |
| abstract_inverted_index.missing | 49, 132, 158 |
| abstract_inverted_index.points. | 134 |
| abstract_inverted_index.project | 21 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.trained | 122 |
| abstract_inverted_index.accuracy | 169 |
| abstract_inverted_index.analyzes | 61 |
| abstract_inverted_index.approach | 101, 162 |
| abstract_inverted_index.collects | 69 |
| abstract_inverted_index.combines | 36 |
| abstract_inverted_index.dataset. | 76 |
| abstract_inverted_index.employed | 83 |
| abstract_inverted_index.estimate | 48 |
| abstract_inverted_index.identify | 111 |
| abstract_inverted_index.involved | 67 |
| abstract_inverted_index.networks | 108 |
| abstract_inverted_index.outliers | 88 |
| abstract_inverted_index.overhead | 10 |
| abstract_inverted_index.planning | 177 |
| abstract_inverted_index.projects | 186 |
| abstract_inverted_index.proposed | 58 |
| abstract_inverted_index.proposes | 30 |
| abstract_inverted_index.provides | 172 |
| abstract_inverted_index.reliable | 129 |
| abstract_inverted_index.solution | 200 |
| abstract_inverted_index.temporal | 116 |
| abstract_inverted_index.variance | 145 |
| abstract_inverted_index.Isolation | 78 |
| abstract_inverted_index.Recurrent | 42 |
| abstract_inverted_index.achieving | 141 |
| abstract_inverted_index.algorithm | 34, 80 |
| abstract_inverted_index.challenge | 204 |
| abstract_inverted_index.construct | 73 |
| abstract_inverted_index.decisions | 180 |
| abstract_inverted_index.developed | 119 |
| abstract_inverted_index.different | 157 |
| abstract_inverted_index.explained | 144 |
| abstract_inverted_index.extracted | 125 |
| abstract_inverted_index.features, | 127 |
| abstract_inverted_index.generates | 128 |
| abstract_inverted_index.patterns. | 117 |
| abstract_inverted_index.technique | 196 |
| abstract_inverted_index.accurately | 47 |
| abstract_inverted_index.extraction | 100 |
| abstract_inverted_index.foundation | 175 |
| abstract_inverted_index.impressive | 143 |
| abstract_inverted_index.innovative | 32 |
| abstract_inverted_index.integrates | 102 |
| abstract_inverted_index.management | 179 |
| abstract_inverted_index.mechanisms | 104 |
| abstract_inverted_index.monitoring | 207 |
| abstract_inverted_index.persistent | 203 |
| abstract_inverted_index.successful | 192 |
| abstract_inverted_index.variations | 19 |
| abstract_inverted_index.algorithm's | 139 |
| abstract_inverted_index.coefficient | 153 |
| abstract_inverted_index.correlation | 152 |
| abstract_inverted_index.demonstrate | 137 |
| abstract_inverted_index.effectively | 110 |
| abstract_inverted_index.information | 71 |
| abstract_inverted_index.maintenance | 209 |
| abstract_inverted_index.management. | 211 |
| abstract_inverted_index.methodology | 59 |
| abstract_inverted_index.predictions | 130 |
| abstract_inverted_index.statistical | 1, 65 |
| abstract_inverted_index.statistics. | 56 |
| abstract_inverted_index.time-series | 37, 126 |
| abstract_inverted_index.Experimental | 135 |
| abstract_inverted_index.completeness | 167 |
| abstract_inverted_index.conservation | 7, 55, 185 |
| abstract_inverted_index.multi-source | 70 |
| abstract_inverted_index.transmission | 11, 188 |
| abstract_inverted_index.convolutional | 106 |
| abstract_inverted_index.interpolation | 33 |
| abstract_inverted_index.preprocessing | 95 |
| abstract_inverted_index.effectiveness, | 140 |
| abstract_inverted_index.implementation | 193 |
| abstract_inverted_index.incompleteness | 16 |
| abstract_inverted_index.infrastructure | 206 |
| abstract_inverted_index.self-attention | 103 |
| abstract_inverted_index.characteristics | 38 |
| abstract_inverted_index.infrastructure. | 190 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.42583516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |