STEAM-EEG: Spatiotemporal EEG Analysis with Markov Transfer Fields and Attentive CNNs Article Swipe
Electroencephalogram (EEG) signals play a pivotal role in biomedical research and clinical applications, including epilepsy diagnosis, sleep disorder analysis, and brain-computer interfaces. However, the effective analysis and interpretation of these complex signals often present significant challenges. This paper presents a novel approach that integrates computer graphics techniques with biological signal pattern recognition, specifically using Markov Transfer Fields (MTFs) for EEG time series imaging. The proposed framework (STEAM-EEG) employs the capabilities of MTFs to capture the spatiotemporal dynamics of EEG signals, transforming them into visually informative images. These images are then rendered, visualised, and modelled using state-of-the-art computer graphics techniques, thereby facilitating enhanced data exploration, pattern recognition, and decision-making. The code could be accessed from GitHub.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.32388/whun2i
- OA Status
- gold
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406290591
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406290591Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32388/whun2iDigital Object Identifier
- Title
-
STEAM-EEG: Spatiotemporal EEG Analysis with Markov Transfer Fields and Attentive CNNsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-12Full publication date if available
- Authors
-
Jiahao Qin, Feng LiuList of authors in order
- Landing page
-
https://doi.org/10.32388/whun2iPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32388/whun2iDirect OA link when available
- Concepts
-
Electroencephalography, Artificial intelligence, Computer science, Pattern recognition (psychology), Markov chain, Psychology, Machine learning, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406290591 |
|---|---|
| doi | https://doi.org/10.32388/whun2i |
| ids.doi | https://doi.org/10.32388/whun2i |
| ids.openalex | https://openalex.org/W4406290591 |
| fwci | 0.0 |
| type | preprint |
| title | STEAM-EEG: Spatiotemporal EEG Analysis with Markov Transfer Fields and Attentive CNNs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.80131995677948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.48104432225227356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47396963834762573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44830596446990967 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C98763669 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4122306704521179 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[4].display_name | Markov chain |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.28749269247055054 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.21743455529212952 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.14303359389305115 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.80131995677948 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.48104432225227356 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.47396963834762573 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.44830596446990967 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/markov-chain |
| keywords[4].score | 0.4122306704521179 |
| keywords[4].display_name | Markov chain |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.28749269247055054 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.21743455529212952 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.14303359389305115 |
| keywords[7].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.32388/whun2i |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.32388/whun2i |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5036857820 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0551-4647 |
| authorships[0].author.display_name | Jiahao Qin |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I146655781 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Liverpool |
| authorships[0].institutions[0].id | https://openalex.org/I146655781 |
| authorships[0].institutions[0].ror | https://ror.org/04xs57h96 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I146655781 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Liverpool |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiahao Qin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Liverpool |
| authorships[1].author.id | https://openalex.org/A5085891781 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5289-5761 |
| authorships[1].author.display_name | Feng Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Jiao Tong University |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Feng Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Jiao Tong University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32388/whun2i |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | STEAM-EEG: Spatiotemporal EEG Analysis with Markov Transfer Fields and Attentive CNNs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-25T14:43:58.451035 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2390279801, https://openalex.org/W2130428257, https://openalex.org/W4391913857, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32388/whun2i |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.32388/whun2i |
| primary_location.id | doi:10.32388/whun2i |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.32388/whun2i |
| publication_date | 2025-01-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3121810080, https://openalex.org/W4206186876, https://openalex.org/W772526079, https://openalex.org/W3138374786, https://openalex.org/W2075647286, https://openalex.org/W4320482856, https://openalex.org/W4283326279, https://openalex.org/W3142958216, https://openalex.org/W4362735757, https://openalex.org/W4365443956, https://openalex.org/W4390777748, https://openalex.org/W4206654584, https://openalex.org/W3158818505, https://openalex.org/W3088256290, https://openalex.org/W2122020906, https://openalex.org/W3185918416, https://openalex.org/W4402195451, https://openalex.org/W6724964489, https://openalex.org/W2342448144, https://openalex.org/W2793407305, https://openalex.org/W4317726987, https://openalex.org/W4200524172, https://openalex.org/W3007593444, https://openalex.org/W3090425814, https://openalex.org/W4220671817, https://openalex.org/W2409534643, https://openalex.org/W3081599307, https://openalex.org/W3198715997, https://openalex.org/W3201991715, https://openalex.org/W4323927812, https://openalex.org/W4308073689, https://openalex.org/W4395071103, https://openalex.org/W4402026339, https://openalex.org/W1980508392, https://openalex.org/W3019839791, https://openalex.org/W4310592224, https://openalex.org/W2167822639, https://openalex.org/W3019900571, https://openalex.org/W2128495200, https://openalex.org/W3163049730, https://openalex.org/W4401153252, https://openalex.org/W4401417448, https://openalex.org/W4398250117, https://openalex.org/W4206798246 |
| referenced_works_count | 44 |
| abstract_inverted_index.a | 4, 39 |
| abstract_inverted_index.be | 111 |
| abstract_inverted_index.in | 7 |
| abstract_inverted_index.of | 28, 70, 77 |
| abstract_inverted_index.to | 72 |
| abstract_inverted_index.EEG | 59, 78 |
| abstract_inverted_index.The | 63, 108 |
| abstract_inverted_index.and | 10, 19, 26, 92, 106 |
| abstract_inverted_index.are | 88 |
| abstract_inverted_index.for | 58 |
| abstract_inverted_index.the | 23, 68, 74 |
| abstract_inverted_index.MTFs | 71 |
| abstract_inverted_index.This | 36 |
| abstract_inverted_index.code | 109 |
| abstract_inverted_index.data | 102 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.into | 82 |
| abstract_inverted_index.play | 3 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.that | 42 |
| abstract_inverted_index.them | 81 |
| abstract_inverted_index.then | 89 |
| abstract_inverted_index.time | 60 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.(EEG) | 1 |
| abstract_inverted_index.These | 86 |
| abstract_inverted_index.could | 110 |
| abstract_inverted_index.novel | 40 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.paper | 37 |
| abstract_inverted_index.sleep | 16 |
| abstract_inverted_index.these | 29 |
| abstract_inverted_index.using | 53, 94 |
| abstract_inverted_index.(MTFs) | 57 |
| abstract_inverted_index.Fields | 56 |
| abstract_inverted_index.Markov | 54 |
| abstract_inverted_index.images | 87 |
| abstract_inverted_index.series | 61 |
| abstract_inverted_index.signal | 49 |
| abstract_inverted_index.GitHub. | 114 |
| abstract_inverted_index.capture | 73 |
| abstract_inverted_index.complex | 30 |
| abstract_inverted_index.employs | 67 |
| abstract_inverted_index.images. | 85 |
| abstract_inverted_index.pattern | 50, 104 |
| abstract_inverted_index.pivotal | 5 |
| abstract_inverted_index.present | 33 |
| abstract_inverted_index.signals | 2, 31 |
| abstract_inverted_index.thereby | 99 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Transfer | 55 |
| abstract_inverted_index.accessed | 112 |
| abstract_inverted_index.analysis | 25 |
| abstract_inverted_index.approach | 41 |
| abstract_inverted_index.clinical | 11 |
| abstract_inverted_index.computer | 44, 96 |
| abstract_inverted_index.disorder | 17 |
| abstract_inverted_index.dynamics | 76 |
| abstract_inverted_index.enhanced | 101 |
| abstract_inverted_index.epilepsy | 14 |
| abstract_inverted_index.graphics | 45, 97 |
| abstract_inverted_index.imaging. | 62 |
| abstract_inverted_index.modelled | 93 |
| abstract_inverted_index.presents | 38 |
| abstract_inverted_index.proposed | 64 |
| abstract_inverted_index.research | 9 |
| abstract_inverted_index.signals, | 79 |
| abstract_inverted_index.visually | 83 |
| abstract_inverted_index.analysis, | 18 |
| abstract_inverted_index.effective | 24 |
| abstract_inverted_index.framework | 65 |
| abstract_inverted_index.including | 13 |
| abstract_inverted_index.rendered, | 90 |
| abstract_inverted_index.biological | 48 |
| abstract_inverted_index.biomedical | 8 |
| abstract_inverted_index.diagnosis, | 15 |
| abstract_inverted_index.integrates | 43 |
| abstract_inverted_index.techniques | 46 |
| abstract_inverted_index.(STEAM-EEG) | 66 |
| abstract_inverted_index.challenges. | 35 |
| abstract_inverted_index.informative | 84 |
| abstract_inverted_index.interfaces. | 21 |
| abstract_inverted_index.significant | 34 |
| abstract_inverted_index.techniques, | 98 |
| abstract_inverted_index.visualised, | 91 |
| abstract_inverted_index.capabilities | 69 |
| abstract_inverted_index.exploration, | 103 |
| abstract_inverted_index.facilitating | 100 |
| abstract_inverted_index.recognition, | 51, 105 |
| abstract_inverted_index.specifically | 52 |
| abstract_inverted_index.transforming | 80 |
| abstract_inverted_index.applications, | 12 |
| abstract_inverted_index.brain-computer | 20 |
| abstract_inverted_index.interpretation | 27 |
| abstract_inverted_index.spatiotemporal | 75 |
| abstract_inverted_index.decision-making. | 107 |
| abstract_inverted_index.state-of-the-art | 95 |
| abstract_inverted_index.Electroencephalogram | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.01119289 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |