Stereo-GS: Online 3D Gaussian Splatting Mapping Using Stereo Depth Estimation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/electronics14224436
We present Stereo-GS, a real-time system for online 3D Gaussian Splatting (3DGS) that reconstructs photorealistic 3D scenes from streaming stereo pairs. Unlike prior offline 3DGS methods that require dense multi-view input or precomputed depth, Stereo-GS estimates metrically accurate depth maps directly from rectified stereo geometry, enabling progressive, globally consistent reconstruction. The frontend combines a stereo implementation of DROID-SLAM for robust tracking and keyframe selection with FoundationStereo, a generalizable stereo network that needs no scene-specific fine-tuning. A two-stage filtering pipeline improves depth reliability by removing outliers using a variance-based refinement filter followed by a multi-view consistency check. In the backend, we selectively initialize new Gaussians in under-represented regions flagged by low PSNR during rendering and continuously optimize them via differentiable rendering. To maintain global coherence with minimal overhead, we apply a lightweight rigid alignment after periodic bundle adjustment. On EuRoC and TartanAir, Stereo-GS attains state-of-the-art performance, improving average PSNR by 0.22 dB and 2.45 dB over the best baseline, respectively. Together with superior visual quality, these results show that Stereo-GS delivers high-fidelity, geometrically accurate 3D reconstructions suitable for real-time robotics, navigation, and immersive AR/VR applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics14224436
- OA Status
- gold
- References
- 36
- OpenAlex ID
- https://openalex.org/W7105693978
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105693978Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics14224436Digital Object Identifier
- Title
-
Stereo-GS: Online 3D Gaussian Splatting Mapping Using Stereo Depth EstimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-14Full publication date if available
- Authors
-
Park Jun-Kyu, Byeong-Gwon Lee, Sanggi Lee, Soo-hwan SongList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics14224436Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/electronics14224436Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Graphics pipeline, Computer vision, Rendering (computer graphics), Outlier, Monocular, Gaussian, Stereo cameras, Gaussian filter, Bundle adjustment, Pipeline (software), Epipolar geometry, View synthesis, Stereoscopy, 3D reconstruction, Filter (signal processing), Computer graphics (images), Retargeting, Depth map, Consistency (knowledge bases), Differentiable function, Bilateral filter, Coherence (philosophical gambling strategy), Gaussian process, 2D to 3D conversion, Cut, Stereo display, Gaussian blur, Stereo cameraTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
Full payload
| id | https://openalex.org/W7105693978 |
|---|---|
| doi | https://doi.org/10.3390/electronics14224436 |
| ids.doi | https://doi.org/10.3390/electronics14224436 |
| ids.openalex | https://openalex.org/W7105693978 |
| fwci | 0.0 |
| type | article |
| title | Stereo-GS: Online 3D Gaussian Splatting Mapping Using Stereo Depth Estimation |
| biblio.issue | 22 |
| biblio.volume | 14 |
| biblio.last_page | 4436 |
| biblio.first_page | 4436 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9225471019744873 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.024136239662766457 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T10741 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.013012963347136974 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Video Coding and Compression Technologies |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8119522333145142 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7195737957954407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C173552908 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6672240495681763 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1366289 |
| concepts[2].display_name | Graphics pipeline |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6419234871864319 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C205711294 |
| concepts[4].level | 2 |
| concepts[4].score | 0.541249692440033 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[4].display_name | Rendering (computer graphics) |
| concepts[5].id | https://openalex.org/C79337645 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5224891304969788 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[5].display_name | Outlier |
| concepts[6].id | https://openalex.org/C65909025 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49226200580596924 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[6].display_name | Monocular |
| concepts[7].id | https://openalex.org/C163716315 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4853581488132477 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[7].display_name | Gaussian |
| concepts[8].id | https://openalex.org/C35861506 |
| concepts[8].level | 3 |
| concepts[8].score | 0.41852232813835144 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17141434 |
| concepts[8].display_name | Stereo cameras |
| concepts[9].id | https://openalex.org/C65892221 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4104626178741455 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1113935 |
| concepts[9].display_name | Gaussian filter |
| concepts[10].id | https://openalex.org/C179458375 |
| concepts[10].level | 3 |
| concepts[10].score | 0.39692139625549316 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1020763 |
| concepts[10].display_name | Bundle adjustment |
| concepts[11].id | https://openalex.org/C43521106 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3888280689716339 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[11].display_name | Pipeline (software) |
| concepts[12].id | https://openalex.org/C23379248 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3842245936393738 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q200904 |
| concepts[12].display_name | Epipolar geometry |
| concepts[13].id | https://openalex.org/C2776449333 |
| concepts[13].level | 3 |
| concepts[13].score | 0.3739856779575348 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7928781 |
| concepts[13].display_name | View synthesis |
| concepts[14].id | https://openalex.org/C126057942 |
| concepts[14].level | 2 |
| concepts[14].score | 0.3520495593547821 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q35158 |
| concepts[14].display_name | Stereoscopy |
| concepts[15].id | https://openalex.org/C109950114 |
| concepts[15].level | 2 |
| concepts[15].score | 0.3461969196796417 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4464732 |
| concepts[15].display_name | 3D reconstruction |
| concepts[16].id | https://openalex.org/C106131492 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3414321839809418 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[16].display_name | Filter (signal processing) |
| concepts[17].id | https://openalex.org/C121684516 |
| concepts[17].level | 1 |
| concepts[17].score | 0.33133772015571594 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[17].display_name | Computer graphics (images) |
| concepts[18].id | https://openalex.org/C2780575108 |
| concepts[18].level | 2 |
| concepts[18].score | 0.33024415373802185 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7316652 |
| concepts[18].display_name | Retargeting |
| concepts[19].id | https://openalex.org/C141268832 |
| concepts[19].level | 3 |
| concepts[19].score | 0.32340240478515625 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2940499 |
| concepts[19].display_name | Depth map |
| concepts[20].id | https://openalex.org/C2776436953 |
| concepts[20].level | 2 |
| concepts[20].score | 0.3216703534126282 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[20].display_name | Consistency (knowledge bases) |
| concepts[21].id | https://openalex.org/C202615002 |
| concepts[21].level | 2 |
| concepts[21].score | 0.3169656991958618 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q783507 |
| concepts[21].display_name | Differentiable function |
| concepts[22].id | https://openalex.org/C156140930 |
| concepts[22].level | 3 |
| concepts[22].score | 0.2930940091609955 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q860417 |
| concepts[22].display_name | Bilateral filter |
| concepts[23].id | https://openalex.org/C2781181686 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2888060510158539 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q4226068 |
| concepts[23].display_name | Coherence (philosophical gambling strategy) |
| concepts[24].id | https://openalex.org/C61326573 |
| concepts[24].level | 3 |
| concepts[24].score | 0.27308037877082825 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[24].display_name | Gaussian process |
| concepts[25].id | https://openalex.org/C84824328 |
| concepts[25].level | 3 |
| concepts[25].score | 0.2642366886138916 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q4633097 |
| concepts[25].display_name | 2D to 3D conversion |
| concepts[26].id | https://openalex.org/C5134670 |
| concepts[26].level | 4 |
| concepts[26].score | 0.2635997533798218 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1626444 |
| concepts[26].display_name | Cut |
| concepts[27].id | https://openalex.org/C1223959 |
| concepts[27].level | 2 |
| concepts[27].score | 0.26128193736076355 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q1191960 |
| concepts[27].display_name | Stereo display |
| concepts[28].id | https://openalex.org/C104317376 |
| concepts[28].level | 5 |
| concepts[28].score | 0.25931769609451294 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q1894545 |
| concepts[28].display_name | Gaussian blur |
| concepts[29].id | https://openalex.org/C185078393 |
| concepts[29].level | 2 |
| concepts[29].score | 0.2507912516593933 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q313783 |
| concepts[29].display_name | Stereo camera |
| keywords[0].id | https://openalex.org/keywords/graphics-pipeline |
| keywords[0].score | 0.6672240495681763 |
| keywords[0].display_name | Graphics pipeline |
| keywords[1].id | https://openalex.org/keywords/rendering |
| keywords[1].score | 0.541249692440033 |
| keywords[1].display_name | Rendering (computer graphics) |
| keywords[2].id | https://openalex.org/keywords/outlier |
| keywords[2].score | 0.5224891304969788 |
| keywords[2].display_name | Outlier |
| keywords[3].id | https://openalex.org/keywords/monocular |
| keywords[3].score | 0.49226200580596924 |
| keywords[3].display_name | Monocular |
| keywords[4].id | https://openalex.org/keywords/gaussian |
| keywords[4].score | 0.4853581488132477 |
| keywords[4].display_name | Gaussian |
| keywords[5].id | https://openalex.org/keywords/stereo-cameras |
| keywords[5].score | 0.41852232813835144 |
| keywords[5].display_name | Stereo cameras |
| keywords[6].id | https://openalex.org/keywords/gaussian-filter |
| keywords[6].score | 0.4104626178741455 |
| keywords[6].display_name | Gaussian filter |
| keywords[7].id | https://openalex.org/keywords/bundle-adjustment |
| keywords[7].score | 0.39692139625549316 |
| keywords[7].display_name | Bundle adjustment |
| keywords[8].id | https://openalex.org/keywords/pipeline |
| keywords[8].score | 0.3888280689716339 |
| keywords[8].display_name | Pipeline (software) |
| language | en |
| locations[0].id | doi:10.3390/electronics14224436 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics14224436 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A2134509885 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-5958-4944 |
| authorships[0].author.display_name | Park Jun-Kyu |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205490536 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[0].institutions[0].id | https://openalex.org/I205490536 |
| authorships[0].institutions[0].ror | https://ror.org/https://ror.org/057q6n778 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205490536 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Dongguk University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junkyu Park |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[1].author.id | https://openalex.org/A2289839756 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Byeong-Gwon Lee |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205490536 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[1].institutions[0].id | https://openalex.org/I205490536 |
| authorships[1].institutions[0].ror | https://ror.org/https://ror.org/057q6n778 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205490536 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Dongguk University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Byeonggwon Lee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[2].author.id | https://openalex.org/A2097438349 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sanggi Lee |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205490536 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I205490536 |
| authorships[2].institutions[0].ror | https://ror.org/https://ror.org/057q6n778 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205490536 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Dongguk University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sanggi Lee |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A2129316363 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2145-1161 |
| authorships[3].author.display_name | Soo-hwan Song |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I205490536 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I205490536 |
| authorships[3].institutions[0].ror | https://ror.org/https://ror.org/057q6n778 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I205490536 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Dongguk University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Soohwan Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, Dongguk University, Seoul 04620, Republic of Korea |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/electronics14224436 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-14T00:00:00 |
| display_name | Stereo-GS: Online 3D Gaussian Splatting Mapping Using Stereo Depth Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-14T23:18:11.916583 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9225471019744873 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/electronics14224436 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics14224436 |
| primary_location.id | doi:10.3390/electronics14224436 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics14224436 |
| publication_date | 2025-11-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4200150166, https://openalex.org/W4221151978, https://openalex.org/W3203570626, https://openalex.org/W4385318467, https://openalex.org/W4402715988, https://openalex.org/W4403761012, https://openalex.org/W4411156209, https://openalex.org/W4414197737, https://openalex.org/W4402716305, https://openalex.org/W4413925289, https://openalex.org/W4411639800, https://openalex.org/W4414360075, https://openalex.org/W4413147880, https://openalex.org/W2396274919, https://openalex.org/W3132270109, https://openalex.org/W1612997784, https://openalex.org/W2535547924, https://openalex.org/W2745859992, https://openalex.org/W2474281075, https://openalex.org/W1970504153, https://openalex.org/W4210678508, https://openalex.org/W2133844819, https://openalex.org/W2963619659, https://openalex.org/W2952813711, https://openalex.org/W4226265017, https://openalex.org/W4386071550, https://openalex.org/W4413156589, https://openalex.org/W4414201506, https://openalex.org/W4401731270, https://openalex.org/W4402698355, https://openalex.org/W4403770187, https://openalex.org/W3172407388, https://openalex.org/W4309764412, https://openalex.org/W2133665775, https://openalex.org/W2962785568, https://openalex.org/W2115579991 |
| referenced_works_count | 36 |
| abstract_inverted_index.A | 75 |
| abstract_inverted_index.a | 3, 53, 66, 86, 92, 129 |
| abstract_inverted_index.3D | 8, 15, 173 |
| abstract_inverted_index.In | 96 |
| abstract_inverted_index.On | 137 |
| abstract_inverted_index.To | 120 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.by | 82, 91, 108, 148 |
| abstract_inverted_index.dB | 150, 153 |
| abstract_inverted_index.in | 104 |
| abstract_inverted_index.no | 72 |
| abstract_inverted_index.of | 56 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.we | 99, 127 |
| abstract_inverted_index.The | 50 |
| abstract_inverted_index.and | 61, 113, 139, 151, 180 |
| abstract_inverted_index.for | 6, 58, 176 |
| abstract_inverted_index.low | 109 |
| abstract_inverted_index.new | 102 |
| abstract_inverted_index.the | 97, 155 |
| abstract_inverted_index.via | 117 |
| abstract_inverted_index.0.22 | 149 |
| abstract_inverted_index.2.45 | 152 |
| abstract_inverted_index.3DGS | 24 |
| abstract_inverted_index.PSNR | 110, 147 |
| abstract_inverted_index.best | 156 |
| abstract_inverted_index.from | 17, 41 |
| abstract_inverted_index.maps | 39 |
| abstract_inverted_index.over | 154 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.that | 12, 26, 70, 167 |
| abstract_inverted_index.them | 116 |
| abstract_inverted_index.with | 64, 124, 160 |
| abstract_inverted_index.AR/VR | 182 |
| abstract_inverted_index.EuRoC | 138 |
| abstract_inverted_index.after | 133 |
| abstract_inverted_index.apply | 128 |
| abstract_inverted_index.dense | 28 |
| abstract_inverted_index.depth | 38, 80 |
| abstract_inverted_index.input | 30 |
| abstract_inverted_index.needs | 71 |
| abstract_inverted_index.prior | 22 |
| abstract_inverted_index.rigid | 131 |
| abstract_inverted_index.these | 164 |
| abstract_inverted_index.using | 85 |
| abstract_inverted_index.(3DGS) | 11 |
| abstract_inverted_index.Unlike | 21 |
| abstract_inverted_index.bundle | 135 |
| abstract_inverted_index.check. | 95 |
| abstract_inverted_index.depth, | 33 |
| abstract_inverted_index.during | 111 |
| abstract_inverted_index.filter | 89 |
| abstract_inverted_index.global | 122 |
| abstract_inverted_index.online | 7 |
| abstract_inverted_index.pairs. | 20 |
| abstract_inverted_index.robust | 59 |
| abstract_inverted_index.scenes | 16 |
| abstract_inverted_index.stereo | 19, 43, 54, 68 |
| abstract_inverted_index.system | 5 |
| abstract_inverted_index.visual | 162 |
| abstract_inverted_index.attains | 142 |
| abstract_inverted_index.average | 146 |
| abstract_inverted_index.flagged | 107 |
| abstract_inverted_index.methods | 25 |
| abstract_inverted_index.minimal | 125 |
| abstract_inverted_index.network | 69 |
| abstract_inverted_index.offline | 23 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.regions | 106 |
| abstract_inverted_index.require | 27 |
| abstract_inverted_index.results | 165 |
| abstract_inverted_index.Gaussian | 9 |
| abstract_inverted_index.Together | 159 |
| abstract_inverted_index.accurate | 37, 172 |
| abstract_inverted_index.backend, | 98 |
| abstract_inverted_index.combines | 52 |
| abstract_inverted_index.delivers | 169 |
| abstract_inverted_index.directly | 40 |
| abstract_inverted_index.enabling | 45 |
| abstract_inverted_index.followed | 90 |
| abstract_inverted_index.frontend | 51 |
| abstract_inverted_index.globally | 47 |
| abstract_inverted_index.improves | 79 |
| abstract_inverted_index.keyframe | 62 |
| abstract_inverted_index.maintain | 121 |
| abstract_inverted_index.optimize | 115 |
| abstract_inverted_index.outliers | 84 |
| abstract_inverted_index.periodic | 134 |
| abstract_inverted_index.pipeline | 78 |
| abstract_inverted_index.quality, | 163 |
| abstract_inverted_index.removing | 83 |
| abstract_inverted_index.suitable | 175 |
| abstract_inverted_index.superior | 161 |
| abstract_inverted_index.tracking | 60 |
| abstract_inverted_index.Gaussians | 103 |
| abstract_inverted_index.Splatting | 10 |
| abstract_inverted_index.Stereo-GS | 34, 141, 168 |
| abstract_inverted_index.alignment | 132 |
| abstract_inverted_index.baseline, | 157 |
| abstract_inverted_index.coherence | 123 |
| abstract_inverted_index.estimates | 35 |
| abstract_inverted_index.filtering | 77 |
| abstract_inverted_index.geometry, | 44 |
| abstract_inverted_index.immersive | 181 |
| abstract_inverted_index.improving | 145 |
| abstract_inverted_index.overhead, | 126 |
| abstract_inverted_index.real-time | 4, 177 |
| abstract_inverted_index.rectified | 42 |
| abstract_inverted_index.rendering | 112 |
| abstract_inverted_index.robotics, | 178 |
| abstract_inverted_index.selection | 63 |
| abstract_inverted_index.streaming | 18 |
| abstract_inverted_index.two-stage | 76 |
| abstract_inverted_index.DROID-SLAM | 57 |
| abstract_inverted_index.Stereo-GS, | 2 |
| abstract_inverted_index.TartanAir, | 140 |
| abstract_inverted_index.consistent | 48 |
| abstract_inverted_index.initialize | 101 |
| abstract_inverted_index.metrically | 36 |
| abstract_inverted_index.multi-view | 29, 93 |
| abstract_inverted_index.refinement | 88 |
| abstract_inverted_index.rendering. | 119 |
| abstract_inverted_index.adjustment. | 136 |
| abstract_inverted_index.consistency | 94 |
| abstract_inverted_index.lightweight | 130 |
| abstract_inverted_index.navigation, | 179 |
| abstract_inverted_index.precomputed | 32 |
| abstract_inverted_index.reliability | 81 |
| abstract_inverted_index.selectively | 100 |
| abstract_inverted_index.continuously | 114 |
| abstract_inverted_index.fine-tuning. | 74 |
| abstract_inverted_index.performance, | 144 |
| abstract_inverted_index.progressive, | 46 |
| abstract_inverted_index.reconstructs | 13 |
| abstract_inverted_index.applications. | 183 |
| abstract_inverted_index.generalizable | 67 |
| abstract_inverted_index.geometrically | 171 |
| abstract_inverted_index.respectively. | 158 |
| abstract_inverted_index.differentiable | 118 |
| abstract_inverted_index.high-fidelity, | 170 |
| abstract_inverted_index.implementation | 55 |
| abstract_inverted_index.photorealistic | 14 |
| abstract_inverted_index.scene-specific | 73 |
| abstract_inverted_index.variance-based | 87 |
| abstract_inverted_index.reconstruction. | 49 |
| abstract_inverted_index.reconstructions | 174 |
| abstract_inverted_index.state-of-the-art | 143 |
| abstract_inverted_index.FoundationStereo, | 65 |
| abstract_inverted_index.under-represented | 105 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.82746279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |