STFT-LDA: An Algorithm to Facilitate the Visual Analysis of Building Seismic Responses Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.00197
Civil engineers use numerical simulations of a building's responses to seismic forces to understand the nature of building failures, the limitations of building codes, and how to determine the latter to prevent the former. Such simulations generate large ensembles of multivariate, multiattribute time series. Comprehensive understanding of this data requires techniques that support the multivariate nature of the time series and can compare behaviors that are both periodic and non-periodic across multiple time scales and multiple time series themselves. In this paper, we present a novel technique to extract such patterns from time series generated from simulations of seismic responses. The core of our approach is the use of topic modeling, where topics correspond to interpretable and discriminative features of the earthquakes. We transform the raw time series data into a time series of topics, and use this visual summary to compare temporal patterns in earthquakes, query earthquakes via the topics across arbitrary time scales, and enable details on demand by linking the topic visualization with the original earthquake data. We show, through a surrogate task and an expert study, that this technique allows analysts to more easily identify recurring patterns in such time series. By integrating this technique in a prototype system, we show how it enables novel forms of visual interaction.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.00197
- https://arxiv.org/pdf/2109.00197
- OA Status
- green
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3196570687
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3196570687Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.00197Digital Object Identifier
- Title
-
STFT-LDA: An Algorithm to Facilitate the Visual Analysis of Building Seismic ResponsesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Zhenge Zhao, Danilo Motta, Matthew Berger, Joshua A. Levine, Ismail Bahadir Kuzucu, Robert B. Fleischman, Afonso Paiva, Carlos ScheideggerList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.00197Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.00197Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.00197Direct OA link when available
- Concepts
-
Computer science, Series (stratigraphy), Discriminative model, Visualization, Time series, Multivariate statistics, Data mining, Machine learning, Artificial intelligence, Geology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3196570687 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.00197 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.00197 |
| ids.mag | 3196570687 |
| ids.openalex | https://openalex.org/W3196570687 |
| fwci | |
| type | preprint |
| title | STFT-LDA: An Algorithm to Facilitate the Visual Analysis of Building Seismic Responses |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T10799 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Data Visualization and Analytics |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6905572414398193 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6546226739883423 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C97931131 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5918872356414795 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5282087 |
| concepts[2].display_name | Discriminative model |
| concepts[3].id | https://openalex.org/C36464697 |
| concepts[3].level | 2 |
| concepts[3].score | 0.578530490398407 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[3].display_name | Visualization |
| concepts[4].id | https://openalex.org/C151406439 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5566005706787109 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[4].display_name | Time series |
| concepts[5].id | https://openalex.org/C161584116 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5156508684158325 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[5].display_name | Multivariate statistics |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5045729875564575 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3877102732658386 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3755599856376648 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C127313418 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12521687150001526 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[9].display_name | Geology |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6905572414398193 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.6546226739883423 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/discriminative-model |
| keywords[2].score | 0.5918872356414795 |
| keywords[2].display_name | Discriminative model |
| keywords[3].id | https://openalex.org/keywords/visualization |
| keywords[3].score | 0.578530490398407 |
| keywords[3].display_name | Visualization |
| keywords[4].id | https://openalex.org/keywords/time-series |
| keywords[4].score | 0.5566005706787109 |
| keywords[4].display_name | Time series |
| keywords[5].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[5].score | 0.5156508684158325 |
| keywords[5].display_name | Multivariate statistics |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.5045729875564575 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3877102732658386 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3755599856376648 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/geology |
| keywords[9].score | 0.12521687150001526 |
| keywords[9].display_name | Geology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.00197 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.00197 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.00197 |
| locations[1].id | doi:10.48550/arxiv.2109.00197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.00197 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043827623 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5804-2815 |
| authorships[0].author.display_name | Zhenge Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhenge Zhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064590368 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3265-6675 |
| authorships[1].author.display_name | Danilo Motta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Danilo Motta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101809284 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4948-7193 |
| authorships[2].author.display_name | Matthew Berger |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthew Berger |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070956346 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4302-1704 |
| authorships[3].author.display_name | Joshua A. Levine |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joshua A. Levine |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5025578867 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ismail Bahadir Kuzucu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ismail B. Kuzucu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5080009930 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-3801-3487 |
| authorships[5].author.display_name | Robert B. Fleischman |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Robert B. Fleischman |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5069205282 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8229-3385 |
| authorships[6].author.display_name | Afonso Paiva |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Afonso Paiva |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5035997603 |
| authorships[7].author.orcid | https://orcid.org/0009-0006-9163-6136 |
| authorships[7].author.display_name | Carlos Scheidegger |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Carlos Scheidegger |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.00197 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-09-13T00:00:00 |
| display_name | STFT-LDA: An Algorithm to Facilitate the Visual Analysis of Building Seismic Responses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| related_works | https://openalex.org/W4389116644, https://openalex.org/W2153315159, https://openalex.org/W3103844505, https://openalex.org/W259157601, https://openalex.org/W4205463238, https://openalex.org/W2761785940, https://openalex.org/W2118640767, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.00197 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.00197 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.00197 |
| primary_location.id | pmh:oai:arXiv.org:2109.00197 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.00197 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.00197 |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2595494611, https://openalex.org/W2488314661, https://openalex.org/W2590252985, https://openalex.org/W2078258892, https://openalex.org/W2026574307, https://openalex.org/W2147768899, https://openalex.org/W2598209472, https://openalex.org/W2045007904, https://openalex.org/W1576209423, https://openalex.org/W2168743256, https://openalex.org/W2112950300, https://openalex.org/W2109552221, https://openalex.org/W2158997610, https://openalex.org/W2071603732, https://openalex.org/W2753907577, https://openalex.org/W1965787203, https://openalex.org/W2114313114, https://openalex.org/W2752648449, https://openalex.org/W2157677944, https://openalex.org/W2142972337, https://openalex.org/W2090491854, https://openalex.org/W2099223662, https://openalex.org/W2128681085, https://openalex.org/W2003163087, https://openalex.org/W2021001446, https://openalex.org/W1920629946, https://openalex.org/W3102382472, https://openalex.org/W2291647668, https://openalex.org/W2097236039, https://openalex.org/W2099081746, https://openalex.org/W2138851433, https://openalex.org/W2030458089, https://openalex.org/W2097940802, https://openalex.org/W1963822838, https://openalex.org/W2024783975, https://openalex.org/W2000369992, https://openalex.org/W1548778934, https://openalex.org/W2146520578, https://openalex.org/W2157041524, https://openalex.org/W1928219753, https://openalex.org/W2106802957, https://openalex.org/W2087382273, https://openalex.org/W2023982588, https://openalex.org/W2096608735, https://openalex.org/W2134310542, https://openalex.org/W1880262756, https://openalex.org/W2020997493 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 6, 84, 130, 173, 200 |
| abstract_inverted_index.By | 195 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.We | 122, 170 |
| abstract_inverted_index.an | 177 |
| abstract_inverted_index.by | 160 |
| abstract_inverted_index.in | 144, 191, 199 |
| abstract_inverted_index.is | 105 |
| abstract_inverted_index.it | 206 |
| abstract_inverted_index.of | 5, 16, 21, 39, 46, 56, 97, 102, 108, 119, 133, 210 |
| abstract_inverted_index.on | 158 |
| abstract_inverted_index.to | 9, 12, 26, 30, 87, 114, 140, 185 |
| abstract_inverted_index.we | 82, 203 |
| abstract_inverted_index.The | 100 |
| abstract_inverted_index.and | 24, 60, 68, 74, 116, 135, 155, 176 |
| abstract_inverted_index.are | 65 |
| abstract_inverted_index.can | 61 |
| abstract_inverted_index.how | 25, 205 |
| abstract_inverted_index.our | 103 |
| abstract_inverted_index.raw | 125 |
| abstract_inverted_index.the | 14, 19, 28, 32, 53, 57, 106, 120, 124, 149, 162, 166 |
| abstract_inverted_index.use | 2, 107, 136 |
| abstract_inverted_index.via | 148 |
| abstract_inverted_index.Such | 34 |
| abstract_inverted_index.both | 66 |
| abstract_inverted_index.core | 101 |
| abstract_inverted_index.data | 48, 128 |
| abstract_inverted_index.from | 91, 95 |
| abstract_inverted_index.into | 129 |
| abstract_inverted_index.more | 186 |
| abstract_inverted_index.show | 204 |
| abstract_inverted_index.such | 89, 192 |
| abstract_inverted_index.task | 175 |
| abstract_inverted_index.that | 51, 64, 180 |
| abstract_inverted_index.this | 47, 80, 137, 181, 197 |
| abstract_inverted_index.time | 42, 58, 72, 76, 92, 126, 131, 153, 193 |
| abstract_inverted_index.with | 165 |
| abstract_inverted_index.Civil | 0 |
| abstract_inverted_index.data. | 169 |
| abstract_inverted_index.forms | 209 |
| abstract_inverted_index.large | 37 |
| abstract_inverted_index.novel | 85, 208 |
| abstract_inverted_index.query | 146 |
| abstract_inverted_index.show, | 171 |
| abstract_inverted_index.topic | 109, 163 |
| abstract_inverted_index.where | 111 |
| abstract_inverted_index.across | 70, 151 |
| abstract_inverted_index.allows | 183 |
| abstract_inverted_index.codes, | 23 |
| abstract_inverted_index.demand | 159 |
| abstract_inverted_index.easily | 187 |
| abstract_inverted_index.enable | 156 |
| abstract_inverted_index.expert | 178 |
| abstract_inverted_index.forces | 11 |
| abstract_inverted_index.latter | 29 |
| abstract_inverted_index.nature | 15, 55 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.scales | 73 |
| abstract_inverted_index.series | 59, 77, 93, 127, 132 |
| abstract_inverted_index.study, | 179 |
| abstract_inverted_index.topics | 112, 150 |
| abstract_inverted_index.visual | 138, 211 |
| abstract_inverted_index.compare | 62, 141 |
| abstract_inverted_index.details | 157 |
| abstract_inverted_index.enables | 207 |
| abstract_inverted_index.extract | 88 |
| abstract_inverted_index.former. | 33 |
| abstract_inverted_index.linking | 161 |
| abstract_inverted_index.present | 83 |
| abstract_inverted_index.prevent | 31 |
| abstract_inverted_index.scales, | 154 |
| abstract_inverted_index.seismic | 10, 98 |
| abstract_inverted_index.series. | 43, 194 |
| abstract_inverted_index.summary | 139 |
| abstract_inverted_index.support | 52 |
| abstract_inverted_index.system, | 202 |
| abstract_inverted_index.through | 172 |
| abstract_inverted_index.topics, | 134 |
| abstract_inverted_index.analysts | 184 |
| abstract_inverted_index.approach | 104 |
| abstract_inverted_index.building | 17, 22 |
| abstract_inverted_index.features | 118 |
| abstract_inverted_index.generate | 36 |
| abstract_inverted_index.identify | 188 |
| abstract_inverted_index.multiple | 71, 75 |
| abstract_inverted_index.original | 167 |
| abstract_inverted_index.patterns | 90, 143, 190 |
| abstract_inverted_index.periodic | 67 |
| abstract_inverted_index.requires | 49 |
| abstract_inverted_index.temporal | 142 |
| abstract_inverted_index.arbitrary | 152 |
| abstract_inverted_index.behaviors | 63 |
| abstract_inverted_index.determine | 27 |
| abstract_inverted_index.engineers | 1 |
| abstract_inverted_index.ensembles | 38 |
| abstract_inverted_index.failures, | 18 |
| abstract_inverted_index.generated | 94 |
| abstract_inverted_index.modeling, | 110 |
| abstract_inverted_index.numerical | 3 |
| abstract_inverted_index.prototype | 201 |
| abstract_inverted_index.recurring | 189 |
| abstract_inverted_index.responses | 8 |
| abstract_inverted_index.surrogate | 174 |
| abstract_inverted_index.technique | 86, 182, 198 |
| abstract_inverted_index.transform | 123 |
| abstract_inverted_index.building's | 7 |
| abstract_inverted_index.correspond | 113 |
| abstract_inverted_index.earthquake | 168 |
| abstract_inverted_index.responses. | 99 |
| abstract_inverted_index.techniques | 50 |
| abstract_inverted_index.understand | 13 |
| abstract_inverted_index.earthquakes | 147 |
| abstract_inverted_index.integrating | 196 |
| abstract_inverted_index.limitations | 20 |
| abstract_inverted_index.simulations | 4, 35, 96 |
| abstract_inverted_index.themselves. | 78 |
| abstract_inverted_index.earthquakes, | 145 |
| abstract_inverted_index.earthquakes. | 121 |
| abstract_inverted_index.interaction. | 212 |
| abstract_inverted_index.multivariate | 54 |
| abstract_inverted_index.non-periodic | 69 |
| abstract_inverted_index.Comprehensive | 44 |
| abstract_inverted_index.interpretable | 115 |
| abstract_inverted_index.multivariate, | 40 |
| abstract_inverted_index.understanding | 45 |
| abstract_inverted_index.visualization | 164 |
| abstract_inverted_index.discriminative | 117 |
| abstract_inverted_index.multiattribute | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[1].score | 0.4000000059604645 |
| sustainable_development_goals[1].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |