STM: Spectrogram Transformer Model for Underwater Acoustic Target Recognition Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/jmse10101428
With the evolution of machine learning and deep learning, more and more researchers have utilized these methods in the field of underwater acoustic target recognition. In these studies, convolutional neural networks (CNNs) are the main components of recognition models. In recent years, a neural network model Transformer that uses a self-attention mechanism was proposed and achieved good performance in deep learning. In this paper, we propose a Transformer-based underwater acoustic target recognition model STM. To the best of our knowledge, this is the first work to introduce Transformer into the underwater acoustic field. We compared the performance of STM with CNN, ResNet18, and other multi-class algorithm models. Experimental results illustrate that under two commonly used dataset partitioning methods, STM achieves 97.7% and 89.9% recognition accuracy, respectively, which are 13.7% and 50% higher than the CNN Model. STM also outperforms the state-of-the-art model CRNN-9 by 3.1% and ResNet18 by 1.8%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/jmse10101428
- https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004
- OA Status
- gold
- Cited By
- 45
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4303712167
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4303712167Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/jmse10101428Digital Object Identifier
- Title
-
STM: Spectrogram Transformer Model for Underwater Acoustic Target RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-04Full publication date if available
- Authors
-
Peng Li, Ji Wu, Yongxian Wang, Qiang Lan, Wenbin XiaoList of authors in order
- Landing page
-
https://doi.org/10.3390/jmse10101428Publisher landing page
- PDF URL
-
https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004Direct OA link when available
- Concepts
-
Underwater, Transformer, Convolutional neural network, Computer science, Spectrogram, Deep learning, Artificial intelligence, Artificial neural network, Speech recognition, Pattern recognition (psychology), Voltage, Engineering, Geology, Electrical engineering, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
45Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 16, 2024: 19, 2023: 10Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4303712167 |
|---|---|
| doi | https://doi.org/10.3390/jmse10101428 |
| ids.doi | https://doi.org/10.3390/jmse10101428 |
| ids.openalex | https://openalex.org/W4303712167 |
| fwci | 10.58619174 |
| type | article |
| title | STM: Spectrogram Transformer Model for Underwater Acoustic Target Recognition |
| awards[0].id | https://openalex.org/G1941580313 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61972406 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G4064749734 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2016YFC1401800 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G6398769179 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61379056 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 10 |
| biblio.last_page | 1428 |
| biblio.first_page | 1428 |
| topics[0].id | https://openalex.org/T11698 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Underwater Acoustics Research |
| topics[1].id | https://openalex.org/T11192 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Underwater Vehicles and Communication Systems |
| topics[2].id | https://openalex.org/T11609 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9940000176429749 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Geophysical Methods and Applications |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C98083399 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7893101572990417 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3246517 |
| concepts[0].display_name | Underwater |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7349005937576294 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6878458261489868 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6808719635009766 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C45273575 |
| concepts[4].level | 2 |
| concepts[4].score | 0.673870861530304 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q578970 |
| concepts[4].display_name | Spectrogram |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5770922899246216 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5329666137695312 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44026243686676025 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40345853567123413 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.39739087224006653 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1938018798828125 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.15016219019889832 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1373424232006073 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.06130865216255188 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C111368507 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[14].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/underwater |
| keywords[0].score | 0.7893101572990417 |
| keywords[0].display_name | Underwater |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.7349005937576294 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6878458261489868 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6808719635009766 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/spectrogram |
| keywords[4].score | 0.673870861530304 |
| keywords[4].display_name | Spectrogram |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5770922899246216 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5329666137695312 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.44026243686676025 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.40345853567123413 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.39739087224006653 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.1938018798828125 |
| keywords[10].display_name | Voltage |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.15016219019889832 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.1373424232006073 |
| keywords[12].display_name | Geology |
| keywords[13].id | https://openalex.org/keywords/electrical-engineering |
| keywords[13].score | 0.06130865216255188 |
| keywords[13].display_name | Electrical engineering |
| language | en |
| locations[0].id | doi:10.3390/jmse10101428 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736865057 |
| locations[0].source.issn | 2077-1312 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2077-1312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Marine Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Marine Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.3390/jmse10101428 |
| locations[1].id | pmh:oai:doaj.org/article:2d56c77e559141d58904480dc6036407 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Marine Science and Engineering, Vol 10, Iss 10, p 1428 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/2d56c77e559141d58904480dc6036407 |
| locations[2].id | pmh:oai:mdpi.com:/2077-1312/10/10/1428/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Marine Science and Engineering; Volume 10; Issue 10; Pages: 1428 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/jmse10101428 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085952168 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1323-3623 |
| authorships[0].author.display_name | Peng Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[0].institutions[0].id | https://openalex.org/I170215575 |
| authorships[0].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National University of Defense Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[1].author.id | https://openalex.org/A5031712321 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7872-9315 |
| authorships[1].author.display_name | Ji Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer, National University of Defense Technology, Changsha 410073, China |
| authorships[1].institutions[0].id | https://openalex.org/I170215575 |
| authorships[1].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National University of Defense Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ji Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer, National University of Defense Technology, Changsha 410073, China |
| authorships[2].author.id | https://openalex.org/A5034520237 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6752-0436 |
| authorships[2].author.display_name | Yongxian Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[2].institutions[0].id | https://openalex.org/I170215575 |
| authorships[2].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National University of Defense Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yongxian Wang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[3].author.id | https://openalex.org/A5101436439 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9667-3485 |
| authorships[3].author.display_name | Qiang Lan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[3].institutions[0].id | https://openalex.org/I170215575 |
| authorships[3].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National University of Defense Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qiang Lan |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[4].author.id | https://openalex.org/A5108726358 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wenbin Xiao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| authorships[4].institutions[0].id | https://openalex.org/I170215575 |
| authorships[4].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National University of Defense Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wenbin Xiao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | STM: Spectrogram Transformer Model for Underwater Acoustic Target Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11698 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Underwater Acoustics Research |
| related_works | https://openalex.org/W2530685530, https://openalex.org/W4375868962, https://openalex.org/W2011227383, https://openalex.org/W2088854863, https://openalex.org/W4402568167, https://openalex.org/W3179495260, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983 |
| cited_by_count | 45 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 16 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/jmse10101428 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736865057 |
| best_oa_location.source.issn | 2077-1312 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2077-1312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Marine Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Marine Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/jmse10101428 |
| primary_location.id | doi:10.3390/jmse10101428 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736865057 |
| primary_location.source.issn | 2077-1312 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2077-1312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Marine Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2077-1312/10/10/1428/pdf?version=1666583004 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Marine Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.3390/jmse10101428 |
| publication_date | 2022-10-04 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2131665779, https://openalex.org/W2058362654, https://openalex.org/W2561682006, https://openalex.org/W2962839102, https://openalex.org/W2112796928, https://openalex.org/W6632100814, https://openalex.org/W3094550259, https://openalex.org/W3205743929, https://openalex.org/W3025581723, https://openalex.org/W2889374687, https://openalex.org/W3116489684, https://openalex.org/W3121523901, https://openalex.org/W2133564696, https://openalex.org/W2413794162, https://openalex.org/W6601150824, https://openalex.org/W2144082342, https://openalex.org/W6679812875, https://openalex.org/W2194775991, https://openalex.org/W3136465594, https://openalex.org/W6739901393, https://openalex.org/W2896457183, https://openalex.org/W3196974791, https://openalex.org/W2794574871, https://openalex.org/W4220773081, https://openalex.org/W3126352256, https://openalex.org/W2936774411, https://openalex.org/W3158553615, https://openalex.org/W2012296273, https://openalex.org/W2466903746, https://openalex.org/W1538131130, https://openalex.org/W2132634821 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 42, 49, 66 |
| abstract_inverted_index.In | 25, 39, 61 |
| abstract_inverted_index.To | 74 |
| abstract_inverted_index.We | 93 |
| abstract_inverted_index.by | 143, 147 |
| abstract_inverted_index.in | 17, 58 |
| abstract_inverted_index.is | 81 |
| abstract_inverted_index.of | 3, 20, 36, 77, 97 |
| abstract_inverted_index.to | 85 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.50% | 130 |
| abstract_inverted_index.CNN | 134 |
| abstract_inverted_index.STM | 98, 118, 136 |
| abstract_inverted_index.and | 6, 10, 54, 102, 121, 129, 145 |
| abstract_inverted_index.are | 32, 127 |
| abstract_inverted_index.our | 78 |
| abstract_inverted_index.the | 1, 18, 33, 75, 82, 89, 95, 133, 139 |
| abstract_inverted_index.two | 112 |
| abstract_inverted_index.was | 52 |
| abstract_inverted_index.3.1% | 144 |
| abstract_inverted_index.CNN, | 100 |
| abstract_inverted_index.STM. | 73 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.best | 76 |
| abstract_inverted_index.deep | 7, 59 |
| abstract_inverted_index.good | 56 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.into | 88 |
| abstract_inverted_index.main | 34 |
| abstract_inverted_index.more | 9, 11 |
| abstract_inverted_index.than | 132 |
| abstract_inverted_index.that | 47, 110 |
| abstract_inverted_index.this | 62, 80 |
| abstract_inverted_index.used | 114 |
| abstract_inverted_index.uses | 48 |
| abstract_inverted_index.with | 99 |
| abstract_inverted_index.work | 84 |
| abstract_inverted_index.1.8%. | 148 |
| abstract_inverted_index.13.7% | 128 |
| abstract_inverted_index.89.9% | 122 |
| abstract_inverted_index.97.7% | 120 |
| abstract_inverted_index.field | 19 |
| abstract_inverted_index.first | 83 |
| abstract_inverted_index.model | 45, 72, 141 |
| abstract_inverted_index.other | 103 |
| abstract_inverted_index.these | 15, 26 |
| abstract_inverted_index.under | 111 |
| abstract_inverted_index.which | 126 |
| abstract_inverted_index.(CNNs) | 31 |
| abstract_inverted_index.CRNN-9 | 142 |
| abstract_inverted_index.Model. | 135 |
| abstract_inverted_index.field. | 92 |
| abstract_inverted_index.higher | 131 |
| abstract_inverted_index.neural | 29, 43 |
| abstract_inverted_index.paper, | 63 |
| abstract_inverted_index.recent | 40 |
| abstract_inverted_index.target | 23, 70 |
| abstract_inverted_index.years, | 41 |
| abstract_inverted_index.dataset | 115 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.models. | 38, 106 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.propose | 65 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.ResNet18 | 146 |
| abstract_inverted_index.achieved | 55 |
| abstract_inverted_index.achieves | 119 |
| abstract_inverted_index.acoustic | 22, 69, 91 |
| abstract_inverted_index.commonly | 113 |
| abstract_inverted_index.compared | 94 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.methods, | 117 |
| abstract_inverted_index.networks | 30 |
| abstract_inverted_index.proposed | 53 |
| abstract_inverted_index.studies, | 27 |
| abstract_inverted_index.utilized | 14 |
| abstract_inverted_index.ResNet18, | 101 |
| abstract_inverted_index.accuracy, | 124 |
| abstract_inverted_index.algorithm | 105 |
| abstract_inverted_index.evolution | 2 |
| abstract_inverted_index.introduce | 86 |
| abstract_inverted_index.learning, | 8 |
| abstract_inverted_index.learning. | 60 |
| abstract_inverted_index.mechanism | 51 |
| abstract_inverted_index.components | 35 |
| abstract_inverted_index.illustrate | 109 |
| abstract_inverted_index.knowledge, | 79 |
| abstract_inverted_index.underwater | 21, 68, 90 |
| abstract_inverted_index.Transformer | 46, 87 |
| abstract_inverted_index.multi-class | 104 |
| abstract_inverted_index.outperforms | 138 |
| abstract_inverted_index.performance | 57, 96 |
| abstract_inverted_index.recognition | 37, 71, 123 |
| abstract_inverted_index.researchers | 12 |
| abstract_inverted_index.Experimental | 107 |
| abstract_inverted_index.partitioning | 116 |
| abstract_inverted_index.recognition. | 24 |
| abstract_inverted_index.convolutional | 28 |
| abstract_inverted_index.respectively, | 125 |
| abstract_inverted_index.self-attention | 50 |
| abstract_inverted_index.state-of-the-art | 140 |
| abstract_inverted_index.Transformer-based | 67 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5034520237, https://openalex.org/A5101436439 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I170215575 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.98590298 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |