Stochastic loss reserving with mixture density neural networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2108.07924
Neural networks offer a versatile, flexible and accurate approach to loss reserving. However, such applications have focused primarily on the (important) problem of fitting accurate central estimates of the outstanding claims. In practice, properties regarding the variability of outstanding claims are equally important (e.g., quantiles for regulatory purposes). In this paper we fill this gap by applying a Mixture Density Network ("MDN") to loss reserving. The approach combines a neural network architecture with a mixture Gaussian distribution to achieve simultaneously an accurate central estimate along with flexible distributional choice. Model fitting is done using a rolling-origin approach. Our approach consistently outperforms the classical over-dispersed model both for central estimates and quantiles of interest, when applied to a wide range of simulated environments of various complexity and specifications. We further extend the MDN approach by proposing two extensions. Firstly, we present a hybrid GLM-MDN approach called "ResMDN". This hybrid approach balances the tractability and ease of understanding of a traditional GLM model on one hand, with the additional accuracy and distributional flexibility provided by the MDN on the other. We show that it can successfully improve the errors of the baseline ccODP, although there is generally a loss of performance when compared to the MDN in the examples we considered. Secondly, we allow for explicit projection constraints, so that actuarial judgement can be directly incorporated in the modelling process. Throughout, we focus on aggregate loss triangles, and show that our methodologies are tractable, and that they out-perform traditional approaches even with relatively limited amounts of data. We use both simulated data -- to validate properties, and real data -- to illustrate and ascertain practicality of the approaches.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://econpapers.repec.org/RePEc:arx:papers:2108.07924
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3195523336
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3195523336Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2108.07924Digital Object Identifier
- Title
-
Stochastic loss reserving with mixture density neural networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-18Full publication date if available
- Authors
-
Muhammed Taher Al-Mudafer, Benjamin Avanzi, Greg Taylor, Bernard WongList of authors in order
- Landing page
-
https://econpapers.repec.org/RePEc:arx:papers:2108.07924Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2108.07924Direct OA link when available
- Concepts
-
Quantile, Computer science, Flexibility (engineering), Range (aeronautics), Artificial neural network, Aggregate (composite), Gaussian, Projection (relational algebra), Mathematical optimization, Econometrics, Artificial intelligence, Algorithm, Mathematics, Statistics, Engineering, Physics, Composite material, Aerospace engineering, Quantum mechanics, Materials scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3195523336 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2108.07924 |
| ids.doi | https://doi.org/10.48550/arxiv.2108.07924 |
| ids.mag | 3195523336 |
| ids.openalex | https://openalex.org/W3195523336 |
| fwci | 0.0 |
| type | preprint |
| title | Stochastic loss reserving with mixture density neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.96670001745224 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T11720 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.965399980545044 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Probability and Risk Models |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9498000144958496 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118671147 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7169069647789001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[0].display_name | Quantile |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6826939582824707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780598303 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6493847370147705 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q65921492 |
| concepts[2].display_name | Flexibility (engineering) |
| concepts[3].id | https://openalex.org/C204323151 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5655766725540161 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[3].display_name | Range (aeronautics) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5408653616905212 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C4679612 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47550827264785767 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q866298 |
| concepts[5].display_name | Aggregate (composite) |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4612845778465271 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C57493831 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4379059076309204 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[7].display_name | Projection (relational algebra) |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39132755994796753 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C149782125 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38025811314582825 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[9].display_name | Econometrics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.33506736159324646 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.30436503887176514 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.18023008108139038 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.12730258703231812 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.08633136749267578 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| concepts[17].id | https://openalex.org/C146978453 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[17].display_name | Aerospace engineering |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C192562407 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[19].display_name | Materials science |
| keywords[0].id | https://openalex.org/keywords/quantile |
| keywords[0].score | 0.7169069647789001 |
| keywords[0].display_name | Quantile |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6826939582824707 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/flexibility |
| keywords[2].score | 0.6493847370147705 |
| keywords[2].display_name | Flexibility (engineering) |
| keywords[3].id | https://openalex.org/keywords/range |
| keywords[3].score | 0.5655766725540161 |
| keywords[3].display_name | Range (aeronautics) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5408653616905212 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/aggregate |
| keywords[5].score | 0.47550827264785767 |
| keywords[5].display_name | Aggregate (composite) |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.4612845778465271 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/projection |
| keywords[7].score | 0.4379059076309204 |
| keywords[7].display_name | Projection (relational algebra) |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.39132755994796753 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/econometrics |
| keywords[9].score | 0.38025811314582825 |
| keywords[9].display_name | Econometrics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.33506736159324646 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.30436503887176514 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.18023008108139038 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.12730258703231812 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.08633136749267578 |
| keywords[14].display_name | Engineering |
| language | en |
| locations[0].id | mag:3195523336 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306401271 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | RePEc: Research Papers in Economics |
| locations[0].source.host_organization | https://openalex.org/I77793887 |
| locations[0].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[0].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | RePEc: Research Papers in Economics |
| locations[0].landing_page_url | https://econpapers.repec.org/RePEc:arx:papers:2108.07924 |
| locations[1].id | doi:10.48550/arxiv.2108.07924 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2108.07924 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5061733357 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1179-8738 |
| authorships[0].author.display_name | Muhammed Taher Al-Mudafer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammed Taher Al-Mudafer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5007625029 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5424-4292 |
| authorships[1].author.display_name | Benjamin Avanzi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Avanzi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5073481605 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1439-769X |
| authorships[2].author.display_name | Greg Taylor |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Greg Taylor |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5046950160 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7124-5342 |
| authorships[3].author.display_name | Bernard Wong |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bernard Wong |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2108.07924 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stochastic loss reserving with mixture density neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.96670001745224 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W3193298142, https://openalex.org/W2922452043, https://openalex.org/W3125468312, https://openalex.org/W2735685735, https://openalex.org/W3034597118, https://openalex.org/W2966381196, https://openalex.org/W3005789139, https://openalex.org/W2787825417, https://openalex.org/W3112308382, https://openalex.org/W3189230820, https://openalex.org/W3085280887, https://openalex.org/W3092813072, https://openalex.org/W2952421968, https://openalex.org/W3123056638, https://openalex.org/W3126807674, https://openalex.org/W2952069420, https://openalex.org/W2226613553, https://openalex.org/W2896365917, https://openalex.org/W2896478781, https://openalex.org/W3094870297 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.48550/arxiv.2108.07924 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2108.07924 |
| primary_location.id | mag:3195523336 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306401271 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | RePEc: Research Papers in Economics |
| primary_location.source.host_organization | https://openalex.org/I77793887 |
| primary_location.source.host_organization_name | Federal Reserve Bank of St. Louis |
| primary_location.source.host_organization_lineage | https://openalex.org/I77793887 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | RePEc: Research Papers in Economics |
| primary_location.landing_page_url | https://econpapers.repec.org/RePEc:arx:papers:2108.07924 |
| publication_date | 2021-08-18 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 57, 68, 73, 94, 116, 140, 157, 195 |
| abstract_inverted_index.-- | 260, 267 |
| abstract_inverted_index.In | 31, 48 |
| abstract_inverted_index.We | 127, 178, 255 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.be | 221 |
| abstract_inverted_index.by | 55, 133, 172 |
| abstract_inverted_index.in | 204, 224 |
| abstract_inverted_index.is | 91, 193 |
| abstract_inverted_index.it | 181 |
| abstract_inverted_index.of | 22, 27, 37, 111, 119, 122, 154, 156, 187, 197, 253, 273 |
| abstract_inverted_index.on | 18, 161, 175, 231 |
| abstract_inverted_index.so | 216 |
| abstract_inverted_index.to | 9, 62, 77, 115, 201, 261, 268 |
| abstract_inverted_index.we | 51, 138, 207, 210, 229 |
| abstract_inverted_index.GLM | 159 |
| abstract_inverted_index.MDN | 131, 174, 203 |
| abstract_inverted_index.Our | 97 |
| abstract_inverted_index.The | 65 |
| abstract_inverted_index.and | 6, 109, 125, 152, 168, 235, 242, 264, 270 |
| abstract_inverted_index.are | 40, 240 |
| abstract_inverted_index.can | 182, 220 |
| abstract_inverted_index.for | 45, 106, 212 |
| abstract_inverted_index.gap | 54 |
| abstract_inverted_index.one | 162 |
| abstract_inverted_index.our | 238 |
| abstract_inverted_index.the | 19, 28, 35, 101, 130, 150, 165, 173, 176, 185, 188, 202, 205, 225, 274 |
| abstract_inverted_index.two | 135 |
| abstract_inverted_index.use | 256 |
| abstract_inverted_index.This | 146 |
| abstract_inverted_index.both | 105, 257 |
| abstract_inverted_index.data | 259, 266 |
| abstract_inverted_index.done | 92 |
| abstract_inverted_index.ease | 153 |
| abstract_inverted_index.even | 248 |
| abstract_inverted_index.fill | 52 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.loss | 10, 63, 196, 233 |
| abstract_inverted_index.real | 265 |
| abstract_inverted_index.show | 179, 236 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 180, 217, 237, 243 |
| abstract_inverted_index.they | 244 |
| abstract_inverted_index.this | 49, 53 |
| abstract_inverted_index.when | 113, 199 |
| abstract_inverted_index.wide | 117 |
| abstract_inverted_index.with | 72, 85, 164, 249 |
| abstract_inverted_index.Model | 89 |
| abstract_inverted_index.allow | 211 |
| abstract_inverted_index.along | 84 |
| abstract_inverted_index.data. | 254 |
| abstract_inverted_index.focus | 230 |
| abstract_inverted_index.hand, | 163 |
| abstract_inverted_index.model | 104, 160 |
| abstract_inverted_index.offer | 2 |
| abstract_inverted_index.paper | 50 |
| abstract_inverted_index.range | 118 |
| abstract_inverted_index.there | 192 |
| abstract_inverted_index.using | 93 |
| abstract_inverted_index.(e.g., | 43 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.called | 144 |
| abstract_inverted_index.ccODP, | 190 |
| abstract_inverted_index.claims | 39 |
| abstract_inverted_index.errors | 186 |
| abstract_inverted_index.extend | 129 |
| abstract_inverted_index.hybrid | 141, 147 |
| abstract_inverted_index.neural | 69 |
| abstract_inverted_index.other. | 177 |
| abstract_inverted_index.("MDN") | 61 |
| abstract_inverted_index.Density | 59 |
| abstract_inverted_index.GLM-MDN | 142 |
| abstract_inverted_index.Mixture | 58 |
| abstract_inverted_index.Network | 60 |
| abstract_inverted_index.achieve | 78 |
| abstract_inverted_index.amounts | 252 |
| abstract_inverted_index.applied | 114 |
| abstract_inverted_index.central | 25, 82, 107 |
| abstract_inverted_index.choice. | 88 |
| abstract_inverted_index.claims. | 30 |
| abstract_inverted_index.equally | 41 |
| abstract_inverted_index.fitting | 23, 90 |
| abstract_inverted_index.focused | 16 |
| abstract_inverted_index.further | 128 |
| abstract_inverted_index.improve | 184 |
| abstract_inverted_index.limited | 251 |
| abstract_inverted_index.mixture | 74 |
| abstract_inverted_index.network | 70 |
| abstract_inverted_index.present | 139 |
| abstract_inverted_index.problem | 21 |
| abstract_inverted_index.various | 123 |
| abstract_inverted_index.Firstly, | 137 |
| abstract_inverted_index.Gaussian | 75 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.accuracy | 167 |
| abstract_inverted_index.accurate | 7, 24, 81 |
| abstract_inverted_index.although | 191 |
| abstract_inverted_index.applying | 56 |
| abstract_inverted_index.approach | 8, 66, 98, 132, 143, 148 |
| abstract_inverted_index.balances | 149 |
| abstract_inverted_index.baseline | 189 |
| abstract_inverted_index.combines | 67 |
| abstract_inverted_index.compared | 200 |
| abstract_inverted_index.directly | 222 |
| abstract_inverted_index.estimate | 83 |
| abstract_inverted_index.examples | 206 |
| abstract_inverted_index.explicit | 213 |
| abstract_inverted_index.flexible | 5, 86 |
| abstract_inverted_index.networks | 1 |
| abstract_inverted_index.process. | 227 |
| abstract_inverted_index.provided | 171 |
| abstract_inverted_index.validate | 262 |
| abstract_inverted_index."ResMDN". | 145 |
| abstract_inverted_index.Secondly, | 209 |
| abstract_inverted_index.actuarial | 218 |
| abstract_inverted_index.aggregate | 232 |
| abstract_inverted_index.approach. | 96 |
| abstract_inverted_index.ascertain | 271 |
| abstract_inverted_index.classical | 102 |
| abstract_inverted_index.estimates | 26, 108 |
| abstract_inverted_index.generally | 194 |
| abstract_inverted_index.important | 42 |
| abstract_inverted_index.interest, | 112 |
| abstract_inverted_index.judgement | 219 |
| abstract_inverted_index.modelling | 226 |
| abstract_inverted_index.practice, | 32 |
| abstract_inverted_index.primarily | 17 |
| abstract_inverted_index.proposing | 134 |
| abstract_inverted_index.quantiles | 44, 110 |
| abstract_inverted_index.regarding | 34 |
| abstract_inverted_index.simulated | 120, 258 |
| abstract_inverted_index.additional | 166 |
| abstract_inverted_index.approaches | 247 |
| abstract_inverted_index.complexity | 124 |
| abstract_inverted_index.illustrate | 269 |
| abstract_inverted_index.projection | 214 |
| abstract_inverted_index.properties | 33 |
| abstract_inverted_index.purposes). | 47 |
| abstract_inverted_index.regulatory | 46 |
| abstract_inverted_index.relatively | 250 |
| abstract_inverted_index.reserving. | 11, 64 |
| abstract_inverted_index.tractable, | 241 |
| abstract_inverted_index.triangles, | 234 |
| abstract_inverted_index.versatile, | 4 |
| abstract_inverted_index.(important) | 20 |
| abstract_inverted_index.Throughout, | 228 |
| abstract_inverted_index.approaches. | 275 |
| abstract_inverted_index.considered. | 208 |
| abstract_inverted_index.extensions. | 136 |
| abstract_inverted_index.flexibility | 170 |
| abstract_inverted_index.out-perform | 245 |
| abstract_inverted_index.outperforms | 100 |
| abstract_inverted_index.outstanding | 29, 38 |
| abstract_inverted_index.performance | 198 |
| abstract_inverted_index.properties, | 263 |
| abstract_inverted_index.traditional | 158, 246 |
| abstract_inverted_index.variability | 36 |
| abstract_inverted_index.applications | 14 |
| abstract_inverted_index.architecture | 71 |
| abstract_inverted_index.consistently | 99 |
| abstract_inverted_index.constraints, | 215 |
| abstract_inverted_index.distribution | 76 |
| abstract_inverted_index.environments | 121 |
| abstract_inverted_index.incorporated | 223 |
| abstract_inverted_index.practicality | 272 |
| abstract_inverted_index.successfully | 183 |
| abstract_inverted_index.tractability | 151 |
| abstract_inverted_index.methodologies | 239 |
| abstract_inverted_index.understanding | 155 |
| abstract_inverted_index.distributional | 87, 169 |
| abstract_inverted_index.over-dispersed | 103 |
| abstract_inverted_index.rolling-origin | 95 |
| abstract_inverted_index.simultaneously | 79 |
| abstract_inverted_index.specifications. | 126 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.12472946 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |