Stochastic Traffic assignment with Electric Vehicles: a convex optimization approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.ifacol.2023.10.139
Electric vehicles and charging stations are increasing worldwide to reduce emissions at the city level. In order to analyze traffic flows and quantify the demand for energy recharge, it is necessary to model users' choices considering different kinds of traffic flows. In this paper, attention is focused on the formalization of the joint traffic and energy demand assignment conditions over a traffic network in presence of electric vehicles (EVs). Specifically, the so-called stochastic user equilibrium (SUE) conditions are used to define the steady state behaviour of a generic traffic network in which some arcs are equipped with EV charging stations. A convex optimization problem is defined and solved, which is equivalent to the solution of the nonlinear and nonconvex set of SUE conditions under a multinomial Logit user's choice function. A real case study, related to a touristic area in the Liguria Region (from Genova airport to Portofino), is considered.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ifacol.2023.10.139
- OA Status
- diamond
- Cited By
- 4
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388905360
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388905360Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ifacol.2023.10.139Digital Object Identifier
- Title
-
Stochastic Traffic assignment with Electric Vehicles: a convex optimization approachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
M. Aicardi, Giulio Ferro, R. Minciardi, Michela RobbaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ifacol.2023.10.139Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ifacol.2023.10.139Direct OA link when available
- Concepts
-
Multinomial logistic regression, Mathematical optimization, Computer science, Electric vehicle, Convex optimization, Set (abstract data type), Regular polygon, Operations research, Engineering, Mathematics, Power (physics), Programming language, Quantum mechanics, Machine learning, Geometry, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388905360 |
|---|---|
| doi | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| ids.doi | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| ids.openalex | https://openalex.org/W4388905360 |
| fwci | 0.65424479 |
| type | article |
| title | Stochastic Traffic assignment with Electric Vehicles: a convex optimization approach |
| biblio.issue | 2 |
| biblio.volume | 56 |
| biblio.last_page | 9079 |
| biblio.first_page | 9074 |
| topics[0].id | https://openalex.org/T11942 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Transportation and Mobility Innovations |
| topics[1].id | https://openalex.org/T10768 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electric Vehicles and Infrastructure |
| topics[2].id | https://openalex.org/T10698 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9994999766349792 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3313 |
| topics[2].subfield.display_name | Transportation |
| topics[2].display_name | Transportation Planning and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C117568660 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6868196725845337 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1650843 |
| concepts[0].display_name | Multinomial logistic regression |
| concepts[1].id | https://openalex.org/C126255220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5934965014457703 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[1].display_name | Mathematical optimization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.531570315361023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2776422217 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5040782690048218 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q13629441 |
| concepts[3].display_name | Electric vehicle |
| concepts[4].id | https://openalex.org/C157972887 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4688865840435028 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q463359 |
| concepts[4].display_name | Convex optimization |
| concepts[5].id | https://openalex.org/C177264268 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4376477003097534 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[5].display_name | Set (abstract data type) |
| concepts[6].id | https://openalex.org/C112680207 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3728550672531128 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[6].display_name | Regular polygon |
| concepts[7].id | https://openalex.org/C42475967 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3682410717010498 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[7].display_name | Operations research |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.22638121247291565 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16887810826301575 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C163258240 |
| concepts[10].level | 2 |
| concepts[10].score | 0.12059038877487183 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[10].display_name | Power (physics) |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/multinomial-logistic-regression |
| keywords[0].score | 0.6868196725845337 |
| keywords[0].display_name | Multinomial logistic regression |
| keywords[1].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[1].score | 0.5934965014457703 |
| keywords[1].display_name | Mathematical optimization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.531570315361023 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/electric-vehicle |
| keywords[3].score | 0.5040782690048218 |
| keywords[3].display_name | Electric vehicle |
| keywords[4].id | https://openalex.org/keywords/convex-optimization |
| keywords[4].score | 0.4688865840435028 |
| keywords[4].display_name | Convex optimization |
| keywords[5].id | https://openalex.org/keywords/set |
| keywords[5].score | 0.4376477003097534 |
| keywords[5].display_name | Set (abstract data type) |
| keywords[6].id | https://openalex.org/keywords/regular-polygon |
| keywords[6].score | 0.3728550672531128 |
| keywords[6].display_name | Regular polygon |
| keywords[7].id | https://openalex.org/keywords/operations-research |
| keywords[7].score | 0.3682410717010498 |
| keywords[7].display_name | Operations research |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.22638121247291565 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16887810826301575 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/power |
| keywords[10].score | 0.12059038877487183 |
| keywords[10].display_name | Power (physics) |
| language | en |
| locations[0].id | doi:10.1016/j.ifacol.2023.10.139 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898405271 |
| locations[0].source.issn | 2405-8963, 2405-8971 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2405-8963 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IFAC-PapersOnLine |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IFAC-PapersOnLine |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| locations[1].id | pmh:oai:iris.unige.it:11567/1174956 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196291 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CINECA IRIS Institutial Research Information System (University of Genoa) |
| locations[1].source.host_organization | https://openalex.org/I83816512 |
| locations[1].source.host_organization_name | University of Genoa |
| locations[1].source.host_organization_lineage | https://openalex.org/I83816512 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://hdl.handle.net/11567/1174956 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012101370 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6462-8815 |
| authorships[0].author.display_name | M. Aicardi |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[0].affiliations[0].raw_affiliation_string | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I83816512 |
| authorships[0].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Genoa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michele Aicardi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[1].author.id | https://openalex.org/A5029096627 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0641-6846 |
| authorships[1].author.display_name | Giulio Ferro |
| authorships[1].countries | IT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[1].affiliations[0].raw_affiliation_string | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[1].institutions[0].id | https://openalex.org/I83816512 |
| authorships[1].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[1].institutions[0].country_code | IT |
| authorships[1].institutions[0].display_name | University of Genoa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Giulio Ferro |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[2].author.id | https://openalex.org/A5079061140 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7402-6535 |
| authorships[2].author.display_name | R. Minciardi |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[2].affiliations[0].raw_affiliation_string | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I83816512 |
| authorships[2].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Genoa |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Riccardo Minciardi |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[3].author.id | https://openalex.org/A5039477899 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0032-9493 |
| authorships[3].author.display_name | Michela Robba |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[3].affiliations[0].raw_affiliation_string | DIBRIS, University of Genoa, Genoa, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I83816512 |
| authorships[3].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Genoa |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Michela Robba |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | DIBRIS, University of Genoa, Genoa, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-11-23T00:00:00 |
| display_name | Stochastic Traffic assignment with Electric Vehicles: a convex optimization approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11942 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Transportation and Mobility Innovations |
| related_works | https://openalex.org/W2494119046, https://openalex.org/W1506113033, https://openalex.org/W2369306031, https://openalex.org/W1582951599, https://openalex.org/W2104977651, https://openalex.org/W2995269021, https://openalex.org/W3033697969, https://openalex.org/W3199373459, https://openalex.org/W195509626, https://openalex.org/W3153752017 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ifacol.2023.10.139 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898405271 |
| best_oa_location.source.issn | 2405-8963, 2405-8971 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2405-8963 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IFAC-PapersOnLine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IFAC-PapersOnLine |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| primary_location.id | doi:10.1016/j.ifacol.2023.10.139 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898405271 |
| primary_location.source.issn | 2405-8963, 2405-8971 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2405-8963 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IFAC-PapersOnLine |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IFAC-PapersOnLine |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ifacol.2023.10.139 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2073349584, https://openalex.org/W2039423859, https://openalex.org/W6601420704, https://openalex.org/W3012192043, https://openalex.org/W2031520873, https://openalex.org/W2112953705, https://openalex.org/W6728664312, https://openalex.org/W2167889269, https://openalex.org/W1181333096, https://openalex.org/W6757910951, https://openalex.org/W2906197634, https://openalex.org/W1542473770, https://openalex.org/W4205937065 |
| referenced_works_count | 13 |
| abstract_inverted_index.A | 100, 130 |
| abstract_inverted_index.a | 60, 86, 124, 136 |
| abstract_inverted_index.EV | 97 |
| abstract_inverted_index.In | 15, 41 |
| abstract_inverted_index.at | 11 |
| abstract_inverted_index.in | 63, 90, 139 |
| abstract_inverted_index.is | 29, 45, 104, 109, 148 |
| abstract_inverted_index.it | 28 |
| abstract_inverted_index.of | 38, 50, 65, 85, 114, 120 |
| abstract_inverted_index.on | 47 |
| abstract_inverted_index.to | 8, 17, 31, 79, 111, 135, 146 |
| abstract_inverted_index.SUE | 121 |
| abstract_inverted_index.and | 2, 21, 54, 106, 117 |
| abstract_inverted_index.are | 5, 77, 94 |
| abstract_inverted_index.for | 25 |
| abstract_inverted_index.set | 119 |
| abstract_inverted_index.the | 12, 23, 48, 51, 70, 81, 112, 115, 140 |
| abstract_inverted_index.arcs | 93 |
| abstract_inverted_index.area | 138 |
| abstract_inverted_index.case | 132 |
| abstract_inverted_index.city | 13 |
| abstract_inverted_index.over | 59 |
| abstract_inverted_index.real | 131 |
| abstract_inverted_index.some | 92 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.used | 78 |
| abstract_inverted_index.user | 73 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.(SUE) | 75 |
| abstract_inverted_index.(from | 143 |
| abstract_inverted_index.Logit | 126 |
| abstract_inverted_index.flows | 20 |
| abstract_inverted_index.joint | 52 |
| abstract_inverted_index.kinds | 37 |
| abstract_inverted_index.model | 32 |
| abstract_inverted_index.order | 16 |
| abstract_inverted_index.state | 83 |
| abstract_inverted_index.under | 123 |
| abstract_inverted_index.which | 91, 108 |
| abstract_inverted_index.(EVs). | 68 |
| abstract_inverted_index.Genova | 144 |
| abstract_inverted_index.Region | 142 |
| abstract_inverted_index.choice | 128 |
| abstract_inverted_index.convex | 101 |
| abstract_inverted_index.define | 80 |
| abstract_inverted_index.demand | 24, 56 |
| abstract_inverted_index.energy | 26, 55 |
| abstract_inverted_index.flows. | 40 |
| abstract_inverted_index.level. | 14 |
| abstract_inverted_index.paper, | 43 |
| abstract_inverted_index.reduce | 9 |
| abstract_inverted_index.steady | 82 |
| abstract_inverted_index.study, | 133 |
| abstract_inverted_index.user's | 127 |
| abstract_inverted_index.users' | 33 |
| abstract_inverted_index.Liguria | 141 |
| abstract_inverted_index.airport | 145 |
| abstract_inverted_index.analyze | 18 |
| abstract_inverted_index.choices | 34 |
| abstract_inverted_index.defined | 105 |
| abstract_inverted_index.focused | 46 |
| abstract_inverted_index.generic | 87 |
| abstract_inverted_index.network | 62, 89 |
| abstract_inverted_index.problem | 103 |
| abstract_inverted_index.related | 134 |
| abstract_inverted_index.solved, | 107 |
| abstract_inverted_index.traffic | 19, 39, 53, 61, 88 |
| abstract_inverted_index.Electric | 0 |
| abstract_inverted_index.charging | 3, 98 |
| abstract_inverted_index.electric | 66 |
| abstract_inverted_index.equipped | 95 |
| abstract_inverted_index.presence | 64 |
| abstract_inverted_index.quantify | 22 |
| abstract_inverted_index.solution | 113 |
| abstract_inverted_index.stations | 4 |
| abstract_inverted_index.vehicles | 1, 67 |
| abstract_inverted_index.attention | 44 |
| abstract_inverted_index.behaviour | 84 |
| abstract_inverted_index.different | 36 |
| abstract_inverted_index.emissions | 10 |
| abstract_inverted_index.function. | 129 |
| abstract_inverted_index.necessary | 30 |
| abstract_inverted_index.nonconvex | 118 |
| abstract_inverted_index.nonlinear | 116 |
| abstract_inverted_index.recharge, | 27 |
| abstract_inverted_index.so-called | 71 |
| abstract_inverted_index.stations. | 99 |
| abstract_inverted_index.touristic | 137 |
| abstract_inverted_index.worldwide | 7 |
| abstract_inverted_index.assignment | 57 |
| abstract_inverted_index.conditions | 58, 76, 122 |
| abstract_inverted_index.equivalent | 110 |
| abstract_inverted_index.increasing | 6 |
| abstract_inverted_index.stochastic | 72 |
| abstract_inverted_index.Portofino), | 147 |
| abstract_inverted_index.considered. | 149 |
| abstract_inverted_index.considering | 35 |
| abstract_inverted_index.equilibrium | 74 |
| abstract_inverted_index.multinomial | 125 |
| abstract_inverted_index.optimization | 102 |
| abstract_inverted_index.Specifically, | 69 |
| abstract_inverted_index.formalization | 49 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5012101370, https://openalex.org/A5079061140, https://openalex.org/A5029096627, https://openalex.org/A5039477899 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I83816512 |
| citation_normalized_percentile.value | 0.66021024 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |