Stock Price Prediction Methods based on FCM and DNN Algorithms Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1155/2021/7480599
With the rapid economic development and the continuous expansion of investment scale, the stock market has produced increasing amounts of transaction data and market public opinion information, making it further difficult for investors to distinguish effective investment information. With the continuous enrichment of artificial intelligence achievements, the status and influence of artificial intelligence researchers in academia and society have been greatly improved. Expert system, as an important part of artificial intelligence, has made breakthrough progress at this stage. Expert system is based on a large amount of professional knowledge and experience for a specific field. Computers of this system can be used to simulate the decision-making process of experts to provide a decision-making basis for solving some complex problems. This research mainly discusses stock price prediction methods on the basis of artificial intelligence (AI) algorithms. Fuzzy clustering is a data mining tool that has been developed in recent years and is widely used. Using this method to process super large-scale databases with various data attributes has the characteristics of high efficiency and small amount of information loss. Theoretically speaking, the use of fuzzy clustering technology and related index method can effectively reduce the massive financial fundamentals of listed companies. By analyzing the influencing factors of stock value investment, we specifically select from the financial statements of listed companies the five aspects that can reflect their profitability, development ability, shareholder profitability, solvency, and operating ability. The full text runs through a variety of AI methods that is the characteristic of the research method used in this article, which pays special attention to verifying the theoretical method model. Doing so ensures its effectiveness in practical applications. In stock value portfolio research, a portfolio optimization model, which integrates the dual objectives of portfolio risk and returns into the risk-adjusted return of capital single objective constraints and solves the portfolio, is established. The accuracy and recall of the FCM model are relatively stable, with accuracies of 0.884 and 0.001, respectively. This research can help improve the number and quality of listed companies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2021/7480599
- https://downloads.hindawi.com/journals/misy/2021/7480599.pdf
- OA Status
- hybrid
- Cited By
- 5
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200162555
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200162555Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2021/7480599Digital Object Identifier
- Title
-
Stock Price Prediction Methods based on FCM and DNN AlgorithmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-17Full publication date if available
- Authors
-
Wennan Wang, Wenjian Liu, Linkai Zhu, Ruijie Luo, Guang Li, Shugeng DaiList of authors in order
- Landing page
-
https://doi.org/10.1155/2021/7480599Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/misy/2021/7480599.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/misy/2021/7480599.pdfDirect OA link when available
- Concepts
-
Computer science, Profitability index, Cluster analysis, Stock market, Artificial intelligence, Machine learning, Fuzzy logic, Expert system, Solvency, Data mining, Operations research, Finance, Economics, Market liquidity, Paleontology, Biology, Engineering, HorseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200162555 |
|---|---|
| doi | https://doi.org/10.1155/2021/7480599 |
| ids.doi | https://doi.org/10.1155/2021/7480599 |
| ids.openalex | https://openalex.org/W4200162555 |
| fwci | 0.87416478 |
| type | article |
| title | Stock Price Prediction Methods based on FCM and DNN Algorithms |
| awards[0].id | https://openalex.org/G8354238679 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020YFB806504 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G6886921857 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | MF2012 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 13 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9945999979972839 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T10047 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9659000039100647 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2003 |
| topics[1].subfield.display_name | Finance |
| topics[1].display_name | Financial Markets and Investment Strategies |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9502999782562256 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2100 |
| apc_list.currency | USD |
| apc_list.value_usd | 2100 |
| apc_paid.value | 2100 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2100 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7825835943222046 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C129361004 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6939463019371033 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2470236 |
| concepts[1].display_name | Profitability index |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5641817450523376 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C2780299701 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5197533965110779 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q475000 |
| concepts[3].display_name | Stock market |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.515110194683075 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46483680605888367 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C58166 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44975796341896057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[6].display_name | Fuzzy logic |
| concepts[7].id | https://openalex.org/C58328972 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4250119924545288 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q184609 |
| concepts[7].display_name | Expert system |
| concepts[8].id | https://openalex.org/C2778215004 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4111577272415161 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1137437 |
| concepts[8].display_name | Solvency |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3703877329826355 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3393729329109192 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C10138342 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22981244325637817 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[11].display_name | Finance |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10573941469192505 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C183582576 |
| concepts[13].level | 2 |
| concepts[13].score | 0.09537452459335327 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q184783 |
| concepts[13].display_name | Market liquidity |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C2780762169 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5905368 |
| concepts[17].display_name | Horse |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7825835943222046 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/profitability-index |
| keywords[1].score | 0.6939463019371033 |
| keywords[1].display_name | Profitability index |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.5641817450523376 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/stock-market |
| keywords[3].score | 0.5197533965110779 |
| keywords[3].display_name | Stock market |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.515110194683075 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.46483680605888367 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[6].score | 0.44975796341896057 |
| keywords[6].display_name | Fuzzy logic |
| keywords[7].id | https://openalex.org/keywords/expert-system |
| keywords[7].score | 0.4250119924545288 |
| keywords[7].display_name | Expert system |
| keywords[8].id | https://openalex.org/keywords/solvency |
| keywords[8].score | 0.4111577272415161 |
| keywords[8].display_name | Solvency |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3703877329826355 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.3393729329109192 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/finance |
| keywords[11].score | 0.22981244325637817 |
| keywords[11].display_name | Finance |
| keywords[12].id | https://openalex.org/keywords/economics |
| keywords[12].score | 0.10573941469192505 |
| keywords[12].display_name | Economics |
| keywords[13].id | https://openalex.org/keywords/market-liquidity |
| keywords[13].score | 0.09537452459335327 |
| keywords[13].display_name | Market liquidity |
| language | en |
| locations[0].id | doi:10.1155/2021/7480599 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S152111507 |
| locations[0].source.issn | 1574-017X, 1875-905X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1574-017X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mobile Information Systems |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://downloads.hindawi.com/journals/misy/2021/7480599.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mobile Information Systems |
| locations[0].landing_page_url | https://doi.org/10.1155/2021/7480599 |
| locations[1].id | pmh:oai:doaj.org/article:229f361bc05943ff9293a291e7b71c4b |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mobile Information Systems, Vol 2021 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/229f361bc05943ff9293a291e7b71c4b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5066108839 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wennan Wang |
| authorships[0].countries | CN, MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Data Science, City University of Macau, Macau, China |
| authorships[0].affiliations[1].raw_affiliation_string | Alibaba Cloud Big Data Application College, Zhuhai College of Science and Technology, Zhuhai, China |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I191208505 |
| authorships[0].affiliations[2].raw_affiliation_string | Department of Finance, School of Economics, Xiamen University, Xiamen, China |
| authorships[0].institutions[0].id | https://openalex.org/I191208505 |
| authorships[0].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xiamen University |
| authorships[0].institutions[1].id | https://openalex.org/I6469544 |
| authorships[0].institutions[1].ror | https://ror.org/04gpd4q15 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I6469544 |
| authorships[0].institutions[1].country_code | MO |
| authorships[0].institutions[1].display_name | City University of Macau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wennan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Alibaba Cloud Big Data Application College, Zhuhai College of Science and Technology, Zhuhai, China, Department of Finance, School of Economics, Xiamen University, Xiamen, China, Institute of Data Science, City University of Macau, Macau, China |
| authorships[1].author.id | https://openalex.org/A5101530398 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9794-5160 |
| authorships[1].author.display_name | Wenjian Liu |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Data Science, City University of Macau, Macau, China |
| authorships[1].institutions[0].id | https://openalex.org/I6469544 |
| authorships[1].institutions[0].ror | https://ror.org/04gpd4q15 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I6469544 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | City University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenjian Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Data Science, City University of Macau, Macau, China |
| authorships[2].author.id | https://openalex.org/A5066501545 |
| authorships[2].author.orcid | https://orcid.org/0009-0007-7623-8145 |
| authorships[2].author.display_name | Linkai Zhu |
| authorships[2].countries | CN, MO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Data Science, City University of Macau, Macau, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128818 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Software Chinese Academy of Sciences, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210128818 |
| authorships[2].institutions[1].ror | https://ror.org/033dfsn42 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210128818 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Institute of Software |
| authorships[2].institutions[2].id | https://openalex.org/I6469544 |
| authorships[2].institutions[2].ror | https://ror.org/04gpd4q15 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I6469544 |
| authorships[2].institutions[2].country_code | MO |
| authorships[2].institutions[2].display_name | City University of Macau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Linkai Zhu |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Faculty of Data Science, City University of Macau, Macau, China, Institute of Software Chinese Academy of Sciences, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5075022217 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7954-2691 |
| authorships[3].author.display_name | Ruijie Luo |
| authorships[3].countries | MO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Data Science, City University of Macau, Macau, China |
| authorships[3].institutions[0].id | https://openalex.org/I6469544 |
| authorships[3].institutions[0].ror | https://ror.org/04gpd4q15 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I6469544 |
| authorships[3].institutions[0].country_code | MO |
| authorships[3].institutions[0].display_name | City University of Macau |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ruijie Luo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Data Science, City University of Macau, Macau, China |
| authorships[4].author.id | https://openalex.org/A5100406318 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1068-0479 |
| authorships[4].author.display_name | Guang Li |
| authorships[4].countries | MO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I6469544 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Data Science, City University of Macau, Macau, China |
| authorships[4].institutions[0].id | https://openalex.org/I6469544 |
| authorships[4].institutions[0].ror | https://ror.org/04gpd4q15 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I6469544 |
| authorships[4].institutions[0].country_code | MO |
| authorships[4].institutions[0].display_name | City University of Macau |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Guang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Data Science, City University of Macau, Macau, China |
| authorships[5].author.id | https://openalex.org/A5072646194 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Shugeng Dai |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I191208505 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Finance, School of Economics, Xiamen University, Xiamen, China |
| authorships[5].institutions[0].id | https://openalex.org/I191208505 |
| authorships[5].institutions[0].ror | https://ror.org/00mcjh785 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I191208505 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Xiamen University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shugeng Dai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Finance, School of Economics, Xiamen University, Xiamen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://downloads.hindawi.com/journals/misy/2021/7480599.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stock Price Prediction Methods based on FCM and DNN Algorithms |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9945999979972839 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W2153554805, https://openalex.org/W3124746325, https://openalex.org/W282484572, https://openalex.org/W2761699488, https://openalex.org/W4379348991, https://openalex.org/W2273294079, https://openalex.org/W2192626524, https://openalex.org/W2884718763, https://openalex.org/W3124546593, https://openalex.org/W3125099825 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2021/7480599 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S152111507 |
| best_oa_location.source.issn | 1574-017X, 1875-905X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1574-017X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mobile Information Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://downloads.hindawi.com/journals/misy/2021/7480599.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mobile Information Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2021/7480599 |
| primary_location.id | doi:10.1155/2021/7480599 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S152111507 |
| primary_location.source.issn | 1574-017X, 1875-905X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1574-017X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mobile Information Systems |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://downloads.hindawi.com/journals/misy/2021/7480599.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mobile Information Systems |
| primary_location.landing_page_url | https://doi.org/10.1155/2021/7480599 |
| publication_date | 2021-12-17 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2774992281, https://openalex.org/W2807306418, https://openalex.org/W3125934984, https://openalex.org/W2572501969, https://openalex.org/W2031820816, https://openalex.org/W1541623824, https://openalex.org/W2571530646, https://openalex.org/W2267545879, https://openalex.org/W2325059796, https://openalex.org/W2563558728, https://openalex.org/W2606013002, https://openalex.org/W2567736956, https://openalex.org/W2604540623, https://openalex.org/W2766499349, https://openalex.org/W2613147658, https://openalex.org/W2789364533, https://openalex.org/W2724964707, https://openalex.org/W2801468666, https://openalex.org/W2739342572, https://openalex.org/W3122787368, https://openalex.org/W2290024306, https://openalex.org/W2606878197, https://openalex.org/W2737705727, https://openalex.org/W2593794846, https://openalex.org/W3019166536, https://openalex.org/W4394644034, https://openalex.org/W3124076228, https://openalex.org/W2234068274 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 83, 92, 111, 138, 239, 279 |
| abstract_inverted_index.AI | 242 |
| abstract_inverted_index.By | 199 |
| abstract_inverted_index.In | 274 |
| abstract_inverted_index.an | 65 |
| abstract_inverted_index.as | 64 |
| abstract_inverted_index.at | 75 |
| abstract_inverted_index.be | 100 |
| abstract_inverted_index.in | 54, 146, 253, 271 |
| abstract_inverted_index.is | 80, 137, 150, 245, 306 |
| abstract_inverted_index.it | 28 |
| abstract_inverted_index.of | 9, 19, 42, 50, 68, 86, 96, 107, 130, 168, 174, 181, 196, 204, 215, 241, 248, 288, 297, 312, 321, 335 |
| abstract_inverted_index.on | 82, 127 |
| abstract_inverted_index.so | 267 |
| abstract_inverted_index.to | 33, 102, 109, 156, 260 |
| abstract_inverted_index.we | 208 |
| abstract_inverted_index.FCM | 314 |
| abstract_inverted_index.The | 234, 308 |
| abstract_inverted_index.and | 5, 22, 48, 56, 89, 149, 171, 185, 231, 291, 302, 310, 323, 333 |
| abstract_inverted_index.are | 316 |
| abstract_inverted_index.can | 99, 189, 222, 328 |
| abstract_inverted_index.for | 31, 91, 114 |
| abstract_inverted_index.has | 15, 71, 143, 165 |
| abstract_inverted_index.its | 269 |
| abstract_inverted_index.the | 1, 6, 12, 39, 46, 104, 128, 166, 179, 192, 201, 212, 218, 246, 249, 262, 285, 294, 304, 313, 331 |
| abstract_inverted_index.use | 180 |
| abstract_inverted_index.(AI) | 133 |
| abstract_inverted_index.This | 119, 326 |
| abstract_inverted_index.With | 0, 38 |
| abstract_inverted_index.been | 59, 144 |
| abstract_inverted_index.data | 21, 139, 163 |
| abstract_inverted_index.dual | 286 |
| abstract_inverted_index.five | 219 |
| abstract_inverted_index.from | 211 |
| abstract_inverted_index.full | 235 |
| abstract_inverted_index.have | 58 |
| abstract_inverted_index.help | 329 |
| abstract_inverted_index.high | 169 |
| abstract_inverted_index.into | 293 |
| abstract_inverted_index.made | 72 |
| abstract_inverted_index.part | 67 |
| abstract_inverted_index.pays | 257 |
| abstract_inverted_index.risk | 290 |
| abstract_inverted_index.runs | 237 |
| abstract_inverted_index.some | 116 |
| abstract_inverted_index.text | 236 |
| abstract_inverted_index.that | 142, 221, 244 |
| abstract_inverted_index.this | 76, 97, 154, 254 |
| abstract_inverted_index.tool | 141 |
| abstract_inverted_index.used | 101, 252 |
| abstract_inverted_index.with | 161, 319 |
| abstract_inverted_index.0.884 | 322 |
| abstract_inverted_index.Doing | 266 |
| abstract_inverted_index.Fuzzy | 135 |
| abstract_inverted_index.Using | 153 |
| abstract_inverted_index.based | 81 |
| abstract_inverted_index.basis | 113, 129 |
| abstract_inverted_index.fuzzy | 182 |
| abstract_inverted_index.index | 187 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.loss. | 176 |
| abstract_inverted_index.model | 315 |
| abstract_inverted_index.price | 124 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.small | 172 |
| abstract_inverted_index.stock | 13, 123, 205, 275 |
| abstract_inverted_index.super | 158 |
| abstract_inverted_index.their | 224 |
| abstract_inverted_index.used. | 152 |
| abstract_inverted_index.value | 206, 276 |
| abstract_inverted_index.which | 256, 283 |
| abstract_inverted_index.years | 148 |
| abstract_inverted_index.0.001, | 324 |
| abstract_inverted_index.Expert | 62, 78 |
| abstract_inverted_index.amount | 85, 173 |
| abstract_inverted_index.field. | 94 |
| abstract_inverted_index.listed | 197, 216, 336 |
| abstract_inverted_index.mainly | 121 |
| abstract_inverted_index.making | 27 |
| abstract_inverted_index.market | 14, 23 |
| abstract_inverted_index.method | 155, 188, 251, 264 |
| abstract_inverted_index.mining | 140 |
| abstract_inverted_index.model, | 282 |
| abstract_inverted_index.model. | 265 |
| abstract_inverted_index.number | 332 |
| abstract_inverted_index.public | 24 |
| abstract_inverted_index.recall | 311 |
| abstract_inverted_index.recent | 147 |
| abstract_inverted_index.reduce | 191 |
| abstract_inverted_index.return | 296 |
| abstract_inverted_index.scale, | 11 |
| abstract_inverted_index.select | 210 |
| abstract_inverted_index.single | 299 |
| abstract_inverted_index.solves | 303 |
| abstract_inverted_index.stage. | 77 |
| abstract_inverted_index.status | 47 |
| abstract_inverted_index.system | 79, 98 |
| abstract_inverted_index.widely | 151 |
| abstract_inverted_index.amounts | 18 |
| abstract_inverted_index.aspects | 220 |
| abstract_inverted_index.capital | 298 |
| abstract_inverted_index.complex | 117 |
| abstract_inverted_index.ensures | 268 |
| abstract_inverted_index.experts | 108 |
| abstract_inverted_index.factors | 203 |
| abstract_inverted_index.further | 29 |
| abstract_inverted_index.greatly | 60 |
| abstract_inverted_index.improve | 330 |
| abstract_inverted_index.massive | 193 |
| abstract_inverted_index.methods | 126, 243 |
| abstract_inverted_index.opinion | 25 |
| abstract_inverted_index.process | 106, 157 |
| abstract_inverted_index.provide | 110 |
| abstract_inverted_index.quality | 334 |
| abstract_inverted_index.reflect | 223 |
| abstract_inverted_index.related | 186 |
| abstract_inverted_index.returns | 292 |
| abstract_inverted_index.society | 57 |
| abstract_inverted_index.solving | 115 |
| abstract_inverted_index.special | 258 |
| abstract_inverted_index.stable, | 318 |
| abstract_inverted_index.system, | 63 |
| abstract_inverted_index.through | 238 |
| abstract_inverted_index.variety | 240 |
| abstract_inverted_index.various | 162 |
| abstract_inverted_index.ability, | 227 |
| abstract_inverted_index.ability. | 233 |
| abstract_inverted_index.academia | 55 |
| abstract_inverted_index.accuracy | 309 |
| abstract_inverted_index.article, | 255 |
| abstract_inverted_index.economic | 3 |
| abstract_inverted_index.produced | 16 |
| abstract_inverted_index.progress | 74 |
| abstract_inverted_index.research | 120, 250, 327 |
| abstract_inverted_index.simulate | 103 |
| abstract_inverted_index.specific | 93 |
| abstract_inverted_index.Computers | 95 |
| abstract_inverted_index.analyzing | 200 |
| abstract_inverted_index.attention | 259 |
| abstract_inverted_index.companies | 217 |
| abstract_inverted_index.databases | 160 |
| abstract_inverted_index.developed | 145 |
| abstract_inverted_index.difficult | 30 |
| abstract_inverted_index.discusses | 122 |
| abstract_inverted_index.effective | 35 |
| abstract_inverted_index.expansion | 8 |
| abstract_inverted_index.financial | 194, 213 |
| abstract_inverted_index.important | 66 |
| abstract_inverted_index.improved. | 61 |
| abstract_inverted_index.influence | 49 |
| abstract_inverted_index.investors | 32 |
| abstract_inverted_index.knowledge | 88 |
| abstract_inverted_index.objective | 300 |
| abstract_inverted_index.operating | 232 |
| abstract_inverted_index.portfolio | 277, 280, 289 |
| abstract_inverted_index.practical | 272 |
| abstract_inverted_index.problems. | 118 |
| abstract_inverted_index.research, | 278 |
| abstract_inverted_index.solvency, | 230 |
| abstract_inverted_index.speaking, | 178 |
| abstract_inverted_index.verifying | 261 |
| abstract_inverted_index.accuracies | 320 |
| abstract_inverted_index.artificial | 43, 51, 69, 131 |
| abstract_inverted_index.attributes | 164 |
| abstract_inverted_index.clustering | 136, 183 |
| abstract_inverted_index.companies. | 198, 337 |
| abstract_inverted_index.continuous | 7, 40 |
| abstract_inverted_index.efficiency | 170 |
| abstract_inverted_index.enrichment | 41 |
| abstract_inverted_index.experience | 90 |
| abstract_inverted_index.increasing | 17 |
| abstract_inverted_index.integrates | 284 |
| abstract_inverted_index.investment | 10, 36 |
| abstract_inverted_index.objectives | 287 |
| abstract_inverted_index.portfolio, | 305 |
| abstract_inverted_index.prediction | 125 |
| abstract_inverted_index.relatively | 317 |
| abstract_inverted_index.statements | 214 |
| abstract_inverted_index.technology | 184 |
| abstract_inverted_index.algorithms. | 134 |
| abstract_inverted_index.constraints | 301 |
| abstract_inverted_index.development | 4, 226 |
| abstract_inverted_index.distinguish | 34 |
| abstract_inverted_index.effectively | 190 |
| abstract_inverted_index.influencing | 202 |
| abstract_inverted_index.information | 175 |
| abstract_inverted_index.investment, | 207 |
| abstract_inverted_index.large-scale | 159 |
| abstract_inverted_index.researchers | 53 |
| abstract_inverted_index.shareholder | 228 |
| abstract_inverted_index.theoretical | 263 |
| abstract_inverted_index.transaction | 20 |
| abstract_inverted_index.breakthrough | 73 |
| abstract_inverted_index.established. | 307 |
| abstract_inverted_index.fundamentals | 195 |
| abstract_inverted_index.information, | 26 |
| abstract_inverted_index.information. | 37 |
| abstract_inverted_index.intelligence | 44, 52, 132 |
| abstract_inverted_index.optimization | 281 |
| abstract_inverted_index.professional | 87 |
| abstract_inverted_index.specifically | 209 |
| abstract_inverted_index.Theoretically | 177 |
| abstract_inverted_index.achievements, | 45 |
| abstract_inverted_index.applications. | 273 |
| abstract_inverted_index.effectiveness | 270 |
| abstract_inverted_index.intelligence, | 70 |
| abstract_inverted_index.respectively. | 325 |
| abstract_inverted_index.risk-adjusted | 295 |
| abstract_inverted_index.characteristic | 247 |
| abstract_inverted_index.profitability, | 225, 229 |
| abstract_inverted_index.characteristics | 167 |
| abstract_inverted_index.decision-making | 105, 112 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5066501545 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128818, https://openalex.org/I6469544 |
| citation_normalized_percentile.value | 0.77201319 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |