Stratification and prediction of drug synergy based on target functional similarity Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1101/586123
Targeted mono-therapies in cancer are hampered by the ability of tumor cells to escape inhibition through rewiring or alternative pathways. Drug combination approaches can provide a means to overcome these resistance mechanisms. Effective use of combinations requires strategies to select combinations from the enormous space of combinations, and to stratify patients according to their likelihood to respond. We here introduce two complementary workflows: One prioritising experiments in high-throughput screens for drug synergy enrichment, and a consecutive workflow to predict hypothesis-driven synergy stratification. Both approaches only need data of efficacy of single drugs. They rely on the notion of target functional similarity between two target proteins. This notion reflects how similarly effective drugs are on different cancer cells as a function of cancer signaling pathways’ activities on those cells. Our synergy prediction workflow revealed that two drugs targeting either the same or functionally opposite pathways are more likely to be synergistic. This enables experimental prioritisation in high-throughput screens and supports the notion that synergy can be achieved by either redundant pathway inhibition or targeting independent compensatory mechanisms. We tested the synergy stratification workflow on seven target protein pairs (AKT/EGFR, AKT/MTOR, BCL2/MTOR, EGFR/MTOR, AKT/BCL2, AKT/ALK and AKT/PARP1, representing 29 combinations and predicted their synergies in 33 breast cancer cell lines (Pearson’s correlation r=0.27). Additionally, we experimentally validated predicted synergy of the BRAF/Insulin Receptor combination (Dabrafenib/BMS−754807) in 48 colorectal cancer cell lines (r=0.5). In conclusion, our synergy prediction workflow can support compound prioritization in large scale drug screenings, and our synergy stratification workflow can select where the efficacy of drugs already known for inducing synergy is higher.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/586123
- https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2924745560
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2924745560Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/586123Digital Object Identifier
- Title
-
Stratification and prediction of drug synergy based on target functional similarityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-03-22Full publication date if available
- Authors
-
Mi Yang, Michael P. Menden, Patricia Jaaks, Jonathan R. Dry, Mathew J. Garnett, Julio Sáez-RodríguezList of authors in order
- Landing page
-
https://doi.org/10.1101/586123Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdfDirect OA link when available
- Concepts
-
PI3K/AKT/mTOR pathway, Protein kinase B, Computational biology, Workflow, Cancer, Biology, Computer science, Cancer research, Bioinformatics, Signal transduction, Database, Cell biology, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2924745560 |
|---|---|
| doi | https://doi.org/10.1101/586123 |
| ids.doi | https://doi.org/10.1101/586123 |
| ids.mag | 2924745560 |
| ids.openalex | https://openalex.org/W2924745560 |
| fwci | 0.42838903 |
| type | preprint |
| title | Stratification and prediction of drug synergy based on target functional similarity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T10932 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9912999868392944 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Microbial Metabolic Engineering and Bioproduction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86554907 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7318504452705383 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q285613 |
| concepts[0].display_name | PI3K/AKT/mTOR pathway |
| concepts[1].id | https://openalex.org/C75217442 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6162087321281433 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q423650 |
| concepts[1].display_name | Protein kinase B |
| concepts[2].id | https://openalex.org/C70721500 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5882903337478638 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[2].display_name | Computational biology |
| concepts[3].id | https://openalex.org/C177212765 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5338749885559082 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q627335 |
| concepts[3].display_name | Workflow |
| concepts[4].id | https://openalex.org/C121608353 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4286850690841675 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[4].display_name | Cancer |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40193262696266174 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38384878635406494 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C502942594 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36610668897628784 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3421914 |
| concepts[7].display_name | Cancer research |
| concepts[8].id | https://openalex.org/C60644358 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3201357424259186 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[8].display_name | Bioinformatics |
| concepts[9].id | https://openalex.org/C62478195 |
| concepts[9].level | 2 |
| concepts[9].score | 0.24896833300590515 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q828130 |
| concepts[9].display_name | Signal transduction |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10145631432533264 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C95444343 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09822976589202881 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7141 |
| concepts[11].display_name | Cell biology |
| concepts[12].id | https://openalex.org/C54355233 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09489542245864868 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[12].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/pi3k/akt/mtor-pathway |
| keywords[0].score | 0.7318504452705383 |
| keywords[0].display_name | PI3K/AKT/mTOR pathway |
| keywords[1].id | https://openalex.org/keywords/protein-kinase-b |
| keywords[1].score | 0.6162087321281433 |
| keywords[1].display_name | Protein kinase B |
| keywords[2].id | https://openalex.org/keywords/computational-biology |
| keywords[2].score | 0.5882903337478638 |
| keywords[2].display_name | Computational biology |
| keywords[3].id | https://openalex.org/keywords/workflow |
| keywords[3].score | 0.5338749885559082 |
| keywords[3].display_name | Workflow |
| keywords[4].id | https://openalex.org/keywords/cancer |
| keywords[4].score | 0.4286850690841675 |
| keywords[4].display_name | Cancer |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.40193262696266174 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.38384878635406494 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/cancer-research |
| keywords[7].score | 0.36610668897628784 |
| keywords[7].display_name | Cancer research |
| keywords[8].id | https://openalex.org/keywords/bioinformatics |
| keywords[8].score | 0.3201357424259186 |
| keywords[8].display_name | Bioinformatics |
| keywords[9].id | https://openalex.org/keywords/signal-transduction |
| keywords[9].score | 0.24896833300590515 |
| keywords[9].display_name | Signal transduction |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.10145631432533264 |
| keywords[10].display_name | Database |
| keywords[11].id | https://openalex.org/keywords/cell-biology |
| keywords[11].score | 0.09822976589202881 |
| keywords[11].display_name | Cell biology |
| keywords[12].id | https://openalex.org/keywords/genetics |
| keywords[12].score | 0.09489542245864868 |
| keywords[12].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1101/586123 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/586123 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102812710 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0366-4390 |
| authorships[0].author.display_name | Mi Yang |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I223822909 |
| authorships[0].affiliations[0].raw_affiliation_string | Heidelberg University, Faculty of Biosciences, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210133948, https://openalex.org/I887968799 |
| authorships[0].affiliations[1].raw_affiliation_string | RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I223822909 |
| authorships[0].institutions[0].ror | https://ror.org/038t36y30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I223822909 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Heidelberg University |
| authorships[0].institutions[1].id | https://openalex.org/I4210133948 |
| authorships[0].institutions[1].ror | https://ror.org/02ptz5951 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I1320481043, https://openalex.org/I2800387288, https://openalex.org/I4210133948, https://openalex.org/I4210161702 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Joint Research Centre |
| authorships[0].institutions[2].id | https://openalex.org/I887968799 |
| authorships[0].institutions[2].ror | https://ror.org/04xfq0f34 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I887968799 |
| authorships[0].institutions[2].country_code | DE |
| authorships[0].institutions[2].display_name | RWTH Aachen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mi Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Heidelberg University, Faculty of Biosciences, Germany, RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany |
| authorships[1].author.id | https://openalex.org/A5055060401 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0267-5792 |
| authorships[1].author.display_name | Michael P. Menden |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I105036370 |
| authorships[1].affiliations[0].raw_affiliation_string | Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK |
| authorships[1].institutions[0].id | https://openalex.org/I105036370 |
| authorships[1].institutions[0].ror | https://ror.org/04r9x1a08 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I105036370 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | AstraZeneca (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michael P. Menden |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK |
| authorships[2].author.id | https://openalex.org/A5054337449 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0041-4313 |
| authorships[2].author.display_name | Patricia Jaaks |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[2].affiliations[0].raw_affiliation_string | Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK |
| authorships[2].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[2].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Patricia Jaaks |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK |
| authorships[3].author.id | https://openalex.org/A5063585604 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1640-2616 |
| authorships[3].author.display_name | Jonathan R. Dry |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210150756 |
| authorships[3].affiliations[0].raw_affiliation_string | Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham MA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210150756 |
| authorships[3].institutions[0].ror | https://ror.org/043cec594 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I105036370, https://openalex.org/I4210150756 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | AstraZeneca (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jonathan Dry |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Oncology, IMED Biotech Unit, AstraZeneca R&D Boston, Waltham MA, USA |
| authorships[4].author.id | https://openalex.org/A5085472676 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2618-4237 |
| authorships[4].author.display_name | Mathew J. Garnett |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[4].affiliations[0].raw_affiliation_string | Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK |
| authorships[4].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[4].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mathew Garnett |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK |
| authorships[5].author.id | https://openalex.org/A5005499510 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8552-8976 |
| authorships[5].author.display_name | Julio Sáez-Rodríguez |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute for Computational Biomedicine, Heidelberg University Hospital and Heidelberg University, Faculty of Medicine, Bioquant Heidelberg, Germany |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210133948, https://openalex.org/I887968799 |
| authorships[5].affiliations[1].raw_affiliation_string | RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I223822909 |
| authorships[5].institutions[0].ror | https://ror.org/038t36y30 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I223822909 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Heidelberg University |
| authorships[5].institutions[1].id | https://openalex.org/I4210133948 |
| authorships[5].institutions[1].ror | https://ror.org/02ptz5951 |
| authorships[5].institutions[1].type | government |
| authorships[5].institutions[1].lineage | https://openalex.org/I1320481043, https://openalex.org/I2800387288, https://openalex.org/I4210133948, https://openalex.org/I4210161702 |
| authorships[5].institutions[1].country_code | DE |
| authorships[5].institutions[1].display_name | Joint Research Centre |
| authorships[5].institutions[2].id | https://openalex.org/I887968799 |
| authorships[5].institutions[2].ror | https://ror.org/04xfq0f34 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I887968799 |
| authorships[5].institutions[2].country_code | DE |
| authorships[5].institutions[2].display_name | RWTH Aachen University |
| authorships[5].institutions[3].id | https://openalex.org/I2802164966 |
| authorships[5].institutions[3].ror | https://ror.org/013czdx64 |
| authorships[5].institutions[3].type | healthcare |
| authorships[5].institutions[3].lineage | https://openalex.org/I2802164966 |
| authorships[5].institutions[3].country_code | DE |
| authorships[5].institutions[3].display_name | University Hospital Heidelberg |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Julio Saez-Rodriguez |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Institute for Computational Biomedicine, Heidelberg University Hospital and Heidelberg University, Faculty of Medicine, Bioquant Heidelberg, Germany, RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Stratification and prediction of drug synergy based on target functional similarity |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W3183179750, https://openalex.org/W2070783513, https://openalex.org/W2024933597, https://openalex.org/W3116479654, https://openalex.org/W4205189596, https://openalex.org/W2916964185, https://openalex.org/W2422815049, https://openalex.org/W2098584395, https://openalex.org/W2019551003, https://openalex.org/W2982360817 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2019 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/586123 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/586123 |
| primary_location.id | doi:10.1101/586123 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2019/03/22/586123.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/586123 |
| publication_date | 2019-03-22 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2555350707, https://openalex.org/W2061061337, https://openalex.org/W2155381255, https://openalex.org/W2156078931, https://openalex.org/W2089605820, https://openalex.org/W1435191252, https://openalex.org/W2036291018, https://openalex.org/W2775061087, https://openalex.org/W2557154264, https://openalex.org/W3100438611, https://openalex.org/W2952223936, https://openalex.org/W2952391626, https://openalex.org/W2461427403, https://openalex.org/W2771996273, https://openalex.org/W2949159188, https://openalex.org/W2335844855, https://openalex.org/W2608863179, https://openalex.org/W2344726805, https://openalex.org/W2262414037, https://openalex.org/W2112180493, https://openalex.org/W2462615746, https://openalex.org/W2792898835, https://openalex.org/W2620847442, https://openalex.org/W2282615677, https://openalex.org/W2106321700, https://openalex.org/W2170291081, https://openalex.org/W2299417213, https://openalex.org/W2165698076, https://openalex.org/W2774112395, https://openalex.org/W2139132031, https://openalex.org/W2335854816, https://openalex.org/W2040739348, https://openalex.org/W1994663540, https://openalex.org/W2168133196, https://openalex.org/W309052956, https://openalex.org/W2764045916, https://openalex.org/W1915767302 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 26, 75, 119 |
| abstract_inverted_index.29 | 197 |
| abstract_inverted_index.33 | 204 |
| abstract_inverted_index.48 | 225 |
| abstract_inverted_index.In | 231 |
| abstract_inverted_index.We | 58, 177 |
| abstract_inverted_index.as | 118 |
| abstract_inverted_index.be | 149, 165 |
| abstract_inverted_index.by | 7, 167 |
| abstract_inverted_index.in | 3, 67, 155, 203, 224, 241 |
| abstract_inverted_index.is | 263 |
| abstract_inverted_index.of | 10, 35, 46, 88, 90, 98, 121, 218, 256 |
| abstract_inverted_index.on | 95, 114, 126, 183 |
| abstract_inverted_index.or | 18, 141, 172 |
| abstract_inverted_index.to | 13, 28, 39, 49, 53, 56, 78, 148 |
| abstract_inverted_index.we | 213 |
| abstract_inverted_index.One | 64 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.and | 48, 74, 158, 194, 199, 246 |
| abstract_inverted_index.are | 5, 113, 145 |
| abstract_inverted_index.can | 24, 164, 237, 251 |
| abstract_inverted_index.for | 70, 260 |
| abstract_inverted_index.how | 109 |
| abstract_inverted_index.our | 233, 247 |
| abstract_inverted_index.the | 8, 43, 96, 139, 160, 179, 219, 254 |
| abstract_inverted_index.two | 61, 103, 135 |
| abstract_inverted_index.use | 34 |
| abstract_inverted_index.Both | 83 |
| abstract_inverted_index.Drug | 21 |
| abstract_inverted_index.They | 93 |
| abstract_inverted_index.This | 106, 151 |
| abstract_inverted_index.cell | 207, 228 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.drug | 71, 244 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.here | 59 |
| abstract_inverted_index.more | 146 |
| abstract_inverted_index.need | 86 |
| abstract_inverted_index.only | 85 |
| abstract_inverted_index.rely | 94 |
| abstract_inverted_index.same | 140 |
| abstract_inverted_index.that | 134, 162 |
| abstract_inverted_index.cells | 12, 117 |
| abstract_inverted_index.drugs | 112, 136, 257 |
| abstract_inverted_index.known | 259 |
| abstract_inverted_index.large | 242 |
| abstract_inverted_index.lines | 208, 229 |
| abstract_inverted_index.means | 27 |
| abstract_inverted_index.pairs | 187 |
| abstract_inverted_index.scale | 243 |
| abstract_inverted_index.seven | 184 |
| abstract_inverted_index.space | 45 |
| abstract_inverted_index.their | 54, 201 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.those | 127 |
| abstract_inverted_index.tumor | 11 |
| abstract_inverted_index.where | 253 |
| abstract_inverted_index.breast | 205 |
| abstract_inverted_index.cancer | 4, 116, 122, 206, 227 |
| abstract_inverted_index.cells. | 128 |
| abstract_inverted_index.drugs. | 92 |
| abstract_inverted_index.either | 138, 168 |
| abstract_inverted_index.escape | 14 |
| abstract_inverted_index.likely | 147 |
| abstract_inverted_index.notion | 97, 107, 161 |
| abstract_inverted_index.select | 40, 252 |
| abstract_inverted_index.single | 91 |
| abstract_inverted_index.target | 99, 104, 185 |
| abstract_inverted_index.tested | 178 |
| abstract_inverted_index.AKT/ALK | 193 |
| abstract_inverted_index.ability | 9 |
| abstract_inverted_index.already | 258 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.enables | 152 |
| abstract_inverted_index.higher. | 264 |
| abstract_inverted_index.pathway | 170 |
| abstract_inverted_index.predict | 79 |
| abstract_inverted_index.protein | 186 |
| abstract_inverted_index.provide | 25 |
| abstract_inverted_index.screens | 69, 157 |
| abstract_inverted_index.support | 238 |
| abstract_inverted_index.synergy | 72, 81, 130, 163, 180, 217, 234, 248, 262 |
| abstract_inverted_index.through | 16 |
| abstract_inverted_index.(r=0.5). | 230 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Receptor | 221 |
| abstract_inverted_index.Targeted | 1 |
| abstract_inverted_index.achieved | 166 |
| abstract_inverted_index.compound | 239 |
| abstract_inverted_index.efficacy | 89, 255 |
| abstract_inverted_index.enormous | 44 |
| abstract_inverted_index.function | 120 |
| abstract_inverted_index.hampered | 6 |
| abstract_inverted_index.inducing | 261 |
| abstract_inverted_index.opposite | 143 |
| abstract_inverted_index.overcome | 29 |
| abstract_inverted_index.pathways | 144 |
| abstract_inverted_index.patients | 51 |
| abstract_inverted_index.r=0.27). | 211 |
| abstract_inverted_index.reflects | 108 |
| abstract_inverted_index.requires | 37 |
| abstract_inverted_index.respond. | 57 |
| abstract_inverted_index.revealed | 133 |
| abstract_inverted_index.rewiring | 17 |
| abstract_inverted_index.stratify | 50 |
| abstract_inverted_index.supports | 159 |
| abstract_inverted_index.workflow | 77, 132, 182, 236, 250 |
| abstract_inverted_index.AKT/BCL2, | 192 |
| abstract_inverted_index.AKT/MTOR, | 189 |
| abstract_inverted_index.Effective | 33 |
| abstract_inverted_index.according | 52 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.effective | 111 |
| abstract_inverted_index.introduce | 60 |
| abstract_inverted_index.pathways. | 20 |
| abstract_inverted_index.predicted | 200, 216 |
| abstract_inverted_index.proteins. | 105 |
| abstract_inverted_index.redundant | 169 |
| abstract_inverted_index.signaling | 123 |
| abstract_inverted_index.similarly | 110 |
| abstract_inverted_index.synergies | 202 |
| abstract_inverted_index.targeting | 137, 173 |
| abstract_inverted_index.validated | 215 |
| abstract_inverted_index.(AKT/EGFR, | 188 |
| abstract_inverted_index.AKT/PARP1, | 195 |
| abstract_inverted_index.BCL2/MTOR, | 190 |
| abstract_inverted_index.EGFR/MTOR, | 191 |
| abstract_inverted_index.activities | 125 |
| abstract_inverted_index.approaches | 23, 84 |
| abstract_inverted_index.colorectal | 226 |
| abstract_inverted_index.functional | 100 |
| abstract_inverted_index.inhibition | 15, 171 |
| abstract_inverted_index.likelihood | 55 |
| abstract_inverted_index.prediction | 131, 235 |
| abstract_inverted_index.resistance | 31 |
| abstract_inverted_index.similarity | 101 |
| abstract_inverted_index.strategies | 38 |
| abstract_inverted_index.workflows: | 63 |
| abstract_inverted_index.alternative | 19 |
| abstract_inverted_index.combination | 22, 222 |
| abstract_inverted_index.conclusion, | 232 |
| abstract_inverted_index.consecutive | 76 |
| abstract_inverted_index.correlation | 210 |
| abstract_inverted_index.enrichment, | 73 |
| abstract_inverted_index.experiments | 66 |
| abstract_inverted_index.independent | 174 |
| abstract_inverted_index.mechanisms. | 32, 176 |
| abstract_inverted_index.pathways’ | 124 |
| abstract_inverted_index.screenings, | 245 |
| abstract_inverted_index.(Pearson’s | 209 |
| abstract_inverted_index.BRAF/Insulin | 220 |
| abstract_inverted_index.combinations | 36, 41, 198 |
| abstract_inverted_index.compensatory | 175 |
| abstract_inverted_index.experimental | 153 |
| abstract_inverted_index.functionally | 142 |
| abstract_inverted_index.prioritising | 65 |
| abstract_inverted_index.representing | 196 |
| abstract_inverted_index.synergistic. | 150 |
| abstract_inverted_index.Additionally, | 212 |
| abstract_inverted_index.combinations, | 47 |
| abstract_inverted_index.complementary | 62 |
| abstract_inverted_index.experimentally | 214 |
| abstract_inverted_index.mono-therapies | 2 |
| abstract_inverted_index.prioritisation | 154 |
| abstract_inverted_index.prioritization | 240 |
| abstract_inverted_index.stratification | 181, 249 |
| abstract_inverted_index.high-throughput | 68, 156 |
| abstract_inverted_index.stratification. | 82 |
| abstract_inverted_index.hypothesis-driven | 80 |
| abstract_inverted_index.(Dabrafenib/BMS−754807) | 223 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5005499510 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I223822909, https://openalex.org/I2802164966, https://openalex.org/I4210133948, https://openalex.org/I887968799 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.63045998 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |