Stratifying systems and Jordan-Hölder extriangulated categories Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2208.07808
Stratifying systems, which have been defined for module, triangulated and exact categories previously, were developed to produce examples of standardly stratified algebras. A stratifying system $Φ$ is a finite set of objects satisfying some orthogonality conditions. One very interesting property is that the subcategory $\mathcal{F}(Φ)$ of objects admitting a composition series-like filtration with factors in $Φ$ has the Jordan-Hölder property on these filtrations. This article has two main aims. First, we introduce notions of subobjects, simple objects and composition series for an extriangulated category, in order to define a Jordan-Hölder extriangulated category. Moreover, we characterise Jordan-Hölder, length, weakly idempotent complete extriangulated categories in terms of the associated Grothendieck monoid and Grothendieck group. Second, we develop a theory of stratifying systems in extriangulated categories. We define projective stratifying systems and show that every stratifying system $Φ$ in an extriangulated category is part of a minimal projective one $(Φ,Q)$. We prove that $\mathcal{F}(Φ)$ is a length, Jordan-Hölder extriangulated category when $(Φ,Q)$ satisfies a left exactness condition. We give several examples and answer a recent question of Enomoto--Saito in the negative.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2208.07808
- https://arxiv.org/pdf/2208.07808
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4292213640
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4292213640Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2208.07808Digital Object Identifier
- Title
-
Stratifying systems and Jordan-Hölder extriangulated categoriesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-16Full publication date if available
- Authors
-
Thomas Brüstle, Souheila Hassoun, Amit Shah, Aran TattarList of authors in order
- Landing page
-
https://arxiv.org/abs/2208.07808Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2208.07808Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2208.07808Direct OA link when available
- Concepts
-
Mathematics, Subcategory, Idempotence, Grothendieck group, Orthogonality, Pure mathematics, Series (stratigraphy), Property (philosophy), Combinatorics, Composition (language), 2-category, Enriched category, Algebra over a field, Linguistics, Functor, Geometry, Paleontology, Philosophy, Epistemology, Biology, Abelian groupTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4292213640 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2208.07808 |
| ids.doi | https://doi.org/10.48550/arxiv.2208.07808 |
| ids.openalex | https://openalex.org/W4292213640 |
| fwci | |
| type | preprint |
| title | Stratifying systems and Jordan-Hölder extriangulated categories |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10287 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2608 |
| topics[0].subfield.display_name | Geometry and Topology |
| topics[0].display_name | Algebraic structures and combinatorial models |
| topics[1].id | https://openalex.org/T11673 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2602 |
| topics[1].subfield.display_name | Algebra and Number Theory |
| topics[1].display_name | Advanced Topics in Algebra |
| topics[2].id | https://openalex.org/T11703 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2602 |
| topics[2].subfield.display_name | Algebra and Number Theory |
| topics[2].display_name | Rings, Modules, and Algebras |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7600647211074829 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C2780617661 |
| concepts[1].level | 2 |
| concepts[1].score | 0.690692126750946 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q541563 |
| concepts[1].display_name | Subcategory |
| concepts[2].id | https://openalex.org/C172252984 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6778267025947571 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q368988 |
| concepts[2].display_name | Idempotence |
| concepts[3].id | https://openalex.org/C122022638 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5453330278396606 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1128678 |
| concepts[3].display_name | Grothendieck group |
| concepts[4].id | https://openalex.org/C17137986 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5105846524238586 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q215067 |
| concepts[4].display_name | Orthogonality |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.48271438479423523 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C143724316 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4716355502605438 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[6].display_name | Series (stratigraphy) |
| concepts[7].id | https://openalex.org/C189950617 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46717485785484314 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[7].display_name | Property (philosophy) |
| concepts[8].id | https://openalex.org/C114614502 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45527854561805725 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[8].display_name | Combinatorics |
| concepts[9].id | https://openalex.org/C40231798 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4214792847633362 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1333743 |
| concepts[9].display_name | Composition (language) |
| concepts[10].id | https://openalex.org/C46263353 |
| concepts[10].level | 4 |
| concepts[10].score | 0.41631245613098145 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4596935 |
| concepts[10].display_name | 2-category |
| concepts[11].id | https://openalex.org/C156163052 |
| concepts[11].level | 3 |
| concepts[11].score | 0.3669137954711914 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5379515 |
| concepts[11].display_name | Enriched category |
| concepts[12].id | https://openalex.org/C136119220 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3557947874069214 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1000660 |
| concepts[12].display_name | Algebra over a field |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.19039520621299744 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C156772000 |
| concepts[14].level | 2 |
| concepts[14].score | 0.16520264744758606 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q864475 |
| concepts[14].display_name | Functor |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07758674025535583 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C151730666 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[16].display_name | Paleontology |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C111472728 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[18].display_name | Epistemology |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C136170076 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q181296 |
| concepts[20].display_name | Abelian group |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.7600647211074829 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/subcategory |
| keywords[1].score | 0.690692126750946 |
| keywords[1].display_name | Subcategory |
| keywords[2].id | https://openalex.org/keywords/idempotence |
| keywords[2].score | 0.6778267025947571 |
| keywords[2].display_name | Idempotence |
| keywords[3].id | https://openalex.org/keywords/grothendieck-group |
| keywords[3].score | 0.5453330278396606 |
| keywords[3].display_name | Grothendieck group |
| keywords[4].id | https://openalex.org/keywords/orthogonality |
| keywords[4].score | 0.5105846524238586 |
| keywords[4].display_name | Orthogonality |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.48271438479423523 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/series |
| keywords[6].score | 0.4716355502605438 |
| keywords[6].display_name | Series (stratigraphy) |
| keywords[7].id | https://openalex.org/keywords/property |
| keywords[7].score | 0.46717485785484314 |
| keywords[7].display_name | Property (philosophy) |
| keywords[8].id | https://openalex.org/keywords/combinatorics |
| keywords[8].score | 0.45527854561805725 |
| keywords[8].display_name | Combinatorics |
| keywords[9].id | https://openalex.org/keywords/composition |
| keywords[9].score | 0.4214792847633362 |
| keywords[9].display_name | Composition (language) |
| keywords[10].id | https://openalex.org/keywords/2-category |
| keywords[10].score | 0.41631245613098145 |
| keywords[10].display_name | 2-category |
| keywords[11].id | https://openalex.org/keywords/enriched-category |
| keywords[11].score | 0.3669137954711914 |
| keywords[11].display_name | Enriched category |
| keywords[12].id | https://openalex.org/keywords/algebra-over-a-field |
| keywords[12].score | 0.3557947874069214 |
| keywords[12].display_name | Algebra over a field |
| keywords[13].id | https://openalex.org/keywords/linguistics |
| keywords[13].score | 0.19039520621299744 |
| keywords[13].display_name | Linguistics |
| keywords[14].id | https://openalex.org/keywords/functor |
| keywords[14].score | 0.16520264744758606 |
| keywords[14].display_name | Functor |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.07758674025535583 |
| keywords[15].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2208.07808 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2208.07808 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2208.07808 |
| locations[1].id | doi:10.48550/arxiv.2208.07808 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2208.07808 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076657947 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1777-8962 |
| authorships[0].author.display_name | Thomas Brüstle |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brüstle, Thomas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5060176894 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8918-8115 |
| authorships[1].author.display_name | Souheila Hassoun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hassoun, Souheila |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058902301 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9099-9687 |
| authorships[2].author.display_name | Amit Shah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shah, Amit |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030884211 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6994-6801 |
| authorships[3].author.display_name | Aran Tattar |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tattar, Aran |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2208.07808 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-08-18T00:00:00 |
| display_name | Stratifying systems and Jordan-Hölder extriangulated categories |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10287 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2608 |
| primary_topic.subfield.display_name | Geometry and Topology |
| primary_topic.display_name | Algebraic structures and combinatorial models |
| related_works | https://openalex.org/W3129180469, https://openalex.org/W3118627574, https://openalex.org/W4287997216, https://openalex.org/W2996170331, https://openalex.org/W2156541639, https://openalex.org/W4205860543, https://openalex.org/W3037883405, https://openalex.org/W2754614052, https://openalex.org/W2348482366, https://openalex.org/W4301738425 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2208.07808 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2208.07808 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2208.07808 |
| primary_location.id | pmh:oai:arXiv.org:2208.07808 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2208.07808 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2208.07808 |
| publication_date | 2022-08-16 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 22 |
| abstract_inverted_index.a | 27, 48, 88, 115, 142, 152, 160, 170 |
| abstract_inverted_index.We | 123, 147, 164 |
| abstract_inverted_index.an | 81, 136 |
| abstract_inverted_index.in | 54, 84, 102, 120, 135, 175 |
| abstract_inverted_index.is | 26, 40, 139, 151 |
| abstract_inverted_index.of | 18, 30, 45, 73, 104, 117, 141, 173 |
| abstract_inverted_index.on | 60 |
| abstract_inverted_index.to | 15, 86 |
| abstract_inverted_index.we | 70, 93, 113 |
| abstract_inverted_index.One | 36 |
| abstract_inverted_index.and | 9, 77, 109, 128, 168 |
| abstract_inverted_index.for | 6, 80 |
| abstract_inverted_index.has | 56, 65 |
| abstract_inverted_index.one | 145 |
| abstract_inverted_index.set | 29 |
| abstract_inverted_index.the | 42, 57, 105, 176 |
| abstract_inverted_index.two | 66 |
| abstract_inverted_index.$Φ$ | 25, 55, 134 |
| abstract_inverted_index.This | 63 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.give | 165 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.left | 161 |
| abstract_inverted_index.main | 67 |
| abstract_inverted_index.part | 140 |
| abstract_inverted_index.show | 129 |
| abstract_inverted_index.some | 33 |
| abstract_inverted_index.that | 41, 130, 149 |
| abstract_inverted_index.very | 37 |
| abstract_inverted_index.were | 13 |
| abstract_inverted_index.when | 157 |
| abstract_inverted_index.with | 52 |
| abstract_inverted_index.aims. | 68 |
| abstract_inverted_index.every | 131 |
| abstract_inverted_index.exact | 10 |
| abstract_inverted_index.order | 85 |
| abstract_inverted_index.prove | 148 |
| abstract_inverted_index.terms | 103 |
| abstract_inverted_index.these | 61 |
| abstract_inverted_index.which | 2 |
| abstract_inverted_index.First, | 69 |
| abstract_inverted_index.answer | 169 |
| abstract_inverted_index.define | 87, 124 |
| abstract_inverted_index.finite | 28 |
| abstract_inverted_index.group. | 111 |
| abstract_inverted_index.monoid | 108 |
| abstract_inverted_index.recent | 171 |
| abstract_inverted_index.series | 79 |
| abstract_inverted_index.simple | 75 |
| abstract_inverted_index.system | 24, 133 |
| abstract_inverted_index.theory | 116 |
| abstract_inverted_index.weakly | 97 |
| abstract_inverted_index.Second, | 112 |
| abstract_inverted_index.article | 64 |
| abstract_inverted_index.defined | 5 |
| abstract_inverted_index.develop | 114 |
| abstract_inverted_index.factors | 53 |
| abstract_inverted_index.length, | 96, 153 |
| abstract_inverted_index.minimal | 143 |
| abstract_inverted_index.module, | 7 |
| abstract_inverted_index.notions | 72 |
| abstract_inverted_index.objects | 31, 46, 76 |
| abstract_inverted_index.produce | 16 |
| abstract_inverted_index.several | 166 |
| abstract_inverted_index.systems | 119, 127 |
| abstract_inverted_index.$(Φ,Q)$ | 158 |
| abstract_inverted_index.category | 138, 156 |
| abstract_inverted_index.complete | 99 |
| abstract_inverted_index.examples | 17, 167 |
| abstract_inverted_index.property | 39, 59 |
| abstract_inverted_index.question | 172 |
| abstract_inverted_index.systems, | 1 |
| abstract_inverted_index.$(Φ,Q)$. | 146 |
| abstract_inverted_index.Moreover, | 92 |
| abstract_inverted_index.admitting | 47 |
| abstract_inverted_index.algebras. | 21 |
| abstract_inverted_index.category, | 83 |
| abstract_inverted_index.category. | 91 |
| abstract_inverted_index.developed | 14 |
| abstract_inverted_index.exactness | 162 |
| abstract_inverted_index.introduce | 71 |
| abstract_inverted_index.negative. | 177 |
| abstract_inverted_index.satisfies | 159 |
| abstract_inverted_index.associated | 106 |
| abstract_inverted_index.categories | 11, 101 |
| abstract_inverted_index.condition. | 163 |
| abstract_inverted_index.filtration | 51 |
| abstract_inverted_index.idempotent | 98 |
| abstract_inverted_index.projective | 125, 144 |
| abstract_inverted_index.satisfying | 32 |
| abstract_inverted_index.standardly | 19 |
| abstract_inverted_index.stratified | 20 |
| abstract_inverted_index.Stratifying | 0 |
| abstract_inverted_index.categories. | 122 |
| abstract_inverted_index.composition | 49, 78 |
| abstract_inverted_index.conditions. | 35 |
| abstract_inverted_index.interesting | 38 |
| abstract_inverted_index.previously, | 12 |
| abstract_inverted_index.series-like | 50 |
| abstract_inverted_index.stratifying | 23, 118, 126, 132 |
| abstract_inverted_index.subcategory | 43 |
| abstract_inverted_index.subobjects, | 74 |
| abstract_inverted_index.Grothendieck | 107, 110 |
| abstract_inverted_index.characterise | 94 |
| abstract_inverted_index.filtrations. | 62 |
| abstract_inverted_index.triangulated | 8 |
| abstract_inverted_index.orthogonality | 34 |
| abstract_inverted_index.Enomoto--Saito | 174 |
| abstract_inverted_index.Jordan-Hölder | 58, 89, 154 |
| abstract_inverted_index.extriangulated | 82, 90, 100, 121, 137, 155 |
| abstract_inverted_index.Jordan-Hölder, | 95 |
| abstract_inverted_index.$\mathcal{F}(Φ)$ | 44, 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |