Streamflow Prediction Using Complex Networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/e26070609
The reliable prediction of streamflow is crucial for various water resources, environmental, and ecosystem applications. The current study employs a complex networks-based approach for the prediction of streamflow. The approach consists of three major steps: (1) the formation of a network using streamflow time series; (2) the calculation of the clustering coefficient (CC) as a network measure; and (3) the use of a clustering coefficient-based nearest neighbor search procedure for streamflow prediction. For network construction, each timestep is considered as a node and the existence of link between any node pair is identified based on the difference (distance) between the streamflow values of the nodes. Different distance threshold values are used to identify the critical distance threshold to form the network. The complex networks-based approach is implemented for the prediction of daily streamflow at 142 stations in the contiguous United States. The prediction accuracy is quantified using three statistical measures: correlation coefficient (R), normalized root mean square error (NRMSE), and Nash–Sutcliffe efficiency (NSE). The influence of the number of neighbors on the prediction accuracy is also investigated. The results, obtained with the critical distance threshold, reveal that the clustering coefficients for the 142 stations range from 0.799 to 0.999. Overall, the prediction approach yields reasonably good results for all 142 stations, with R values ranging from 0.05 to 0.99, NRMSE values ranging from 0.1 to 12.3, and the NSE values ranging from −0.89 to 0.99. An attempt is also made to examine the relationship between prediction accuracy and the catchment characteristics/streamflow statistical properties (drainage area, mean flow, coefficient of variation of flow). The results suggest that the prediction accuracy does not have much of a relationship with the drainage area and the mean streamflow values, but with the coefficient of variation of flow. The outcomes from this study are certainly promising regarding the application of complex networks-based concepts for the prediction of streamflow (and other hydrologic) time series.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e26070609
- OA Status
- gold
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400774780
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400774780Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e26070609Digital Object Identifier
- Title
-
Streamflow Prediction Using Complex NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-18Full publication date if available
- Authors
-
Abdul Wajed Farhat, B. Deepthi, Bellie SivakumarList of authors in order
- Landing page
-
https://doi.org/10.3390/e26070609Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/e26070609Direct OA link when available
- Concepts
-
Streamflow, Computer science, Data mining, Geography, Cartography, Drainage basinTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400774780 |
|---|---|
| doi | https://doi.org/10.3390/e26070609 |
| ids.doi | https://doi.org/10.3390/e26070609 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39056971 |
| ids.openalex | https://openalex.org/W4400774780 |
| fwci | 0.0 |
| type | article |
| title | Streamflow Prediction Using Complex Networks |
| awards[0].id | https://openalex.org/G5441254254 |
| awards[0].funder_id | https://openalex.org/F4320323448 |
| awards[0].display_name | |
| awards[0].funder_award_id | RD/0519-IRCCSH0-027 |
| awards[0].funder_display_name | Indian Institute of Technology Bombay |
| biblio.issue | 7 |
| biblio.volume | 26 |
| biblio.last_page | 609 |
| biblio.first_page | 609 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| funders[0].id | https://openalex.org/F4320323448 |
| funders[0].ror | https://ror.org/02qyf5152 |
| funders[0].display_name | Indian Institute of Technology Bombay |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C53739315 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8537900447845459 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q29425295 |
| concepts[0].display_name | Streamflow |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4153901934623718 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.33660081028938293 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C205649164 |
| concepts[3].level | 0 |
| concepts[3].score | 0.18859466910362244 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[3].display_name | Geography |
| concepts[4].id | https://openalex.org/C58640448 |
| concepts[4].level | 1 |
| concepts[4].score | 0.14250576496124268 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[4].display_name | Cartography |
| concepts[5].id | https://openalex.org/C126645576 |
| concepts[5].level | 2 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q166620 |
| concepts[5].display_name | Drainage basin |
| keywords[0].id | https://openalex.org/keywords/streamflow |
| keywords[0].score | 0.8537900447845459 |
| keywords[0].display_name | Streamflow |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4153901934623718 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.33660081028938293 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/geography |
| keywords[3].score | 0.18859466910362244 |
| keywords[3].display_name | Geography |
| keywords[4].id | https://openalex.org/keywords/cartography |
| keywords[4].score | 0.14250576496124268 |
| keywords[4].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.3390/e26070609 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e26070609 |
| locations[1].id | pmid:39056971 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39056971 |
| locations[2].id | pmh:oai:doaj.org/article:3cc2ff759e314f5aa5e7bb042022ae64 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy, Vol 26, Iss 7, p 609 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/3cc2ff759e314f5aa5e7bb042022ae64 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11276579 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11276579 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5104771900 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Abdul Wajed Farhat |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| authorships[0].institutions[0].id | https://openalex.org/I162827531 |
| authorships[0].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abdul Wajed Farhat |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| authorships[1].author.id | https://openalex.org/A5079098881 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | B. Deepthi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| authorships[1].institutions[0].id | https://openalex.org/I162827531 |
| authorships[1].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | B. Deepthi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| authorships[2].author.id | https://openalex.org/A5008084305 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0523-890X |
| authorships[2].author.display_name | Bellie Sivakumar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| authorships[2].institutions[0].id | https://openalex.org/I162827531 |
| authorships[2].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bellie Sivakumar |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/e26070609 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Streamflow Prediction Using Complex Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2439644404, https://openalex.org/W3174343427, https://openalex.org/W2000979301, https://openalex.org/W98325756, https://openalex.org/W2061279527, https://openalex.org/W105199006, https://openalex.org/W4213385761 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/e26070609 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e26070609 |
| primary_location.id | doi:10.3390/e26070609 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e26070609 |
| publication_date | 2024-07-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3147862188, https://openalex.org/W6995515703, https://openalex.org/W2016613589, https://openalex.org/W2006099917, https://openalex.org/W1975621139, https://openalex.org/W2020692788, https://openalex.org/W2031292142, https://openalex.org/W2132995696, https://openalex.org/W1986656491, https://openalex.org/W1965689554, https://openalex.org/W2079720636, https://openalex.org/W3178810976, https://openalex.org/W2230911711, https://openalex.org/W2010551882, https://openalex.org/W4386946078, https://openalex.org/W4389558262, https://openalex.org/W4300164483, https://openalex.org/W2112090702, https://openalex.org/W2008620264, https://openalex.org/W2164716356, https://openalex.org/W2152612535, https://openalex.org/W2969478284, https://openalex.org/W2100599732, https://openalex.org/W2272469900, https://openalex.org/W2809709127, https://openalex.org/W3156249214, https://openalex.org/W2553963136, https://openalex.org/W3127685965, https://openalex.org/W3007916632, https://openalex.org/W3197449367, https://openalex.org/W4309918968, https://openalex.org/W2991861327, https://openalex.org/W2924331493, https://openalex.org/W2963768879, https://openalex.org/W2055538060, https://openalex.org/W2056724277, https://openalex.org/W3154161832, https://openalex.org/W3035813342, https://openalex.org/W3044214357 |
| referenced_works_count | 39 |
| abstract_inverted_index.R | 212 |
| abstract_inverted_index.a | 19, 39, 54, 62, 80, 274 |
| abstract_inverted_index.An | 235 |
| abstract_inverted_index.as | 53, 79 |
| abstract_inverted_index.at | 133 |
| abstract_inverted_index.in | 136 |
| abstract_inverted_index.is | 5, 77, 91, 125, 144, 174, 237 |
| abstract_inverted_index.of | 3, 26, 31, 38, 48, 61, 85, 102, 130, 165, 168, 258, 260, 273, 289, 291, 304, 311 |
| abstract_inverted_index.on | 94, 170 |
| abstract_inverted_index.to | 111, 117, 197, 217, 224, 233, 240 |
| abstract_inverted_index.(1) | 35 |
| abstract_inverted_index.(2) | 45 |
| abstract_inverted_index.(3) | 58 |
| abstract_inverted_index.0.1 | 223 |
| abstract_inverted_index.142 | 134, 192, 209 |
| abstract_inverted_index.For | 72 |
| abstract_inverted_index.NSE | 228 |
| abstract_inverted_index.The | 0, 15, 28, 121, 141, 163, 177, 262, 293 |
| abstract_inverted_index.all | 208 |
| abstract_inverted_index.and | 12, 57, 82, 159, 226, 247, 280 |
| abstract_inverted_index.any | 88 |
| abstract_inverted_index.are | 109, 298 |
| abstract_inverted_index.but | 285 |
| abstract_inverted_index.for | 7, 23, 69, 127, 190, 207, 308 |
| abstract_inverted_index.not | 270 |
| abstract_inverted_index.the | 24, 36, 46, 49, 59, 83, 95, 99, 103, 113, 119, 128, 137, 166, 171, 181, 187, 191, 200, 227, 242, 248, 266, 277, 281, 287, 302, 309 |
| abstract_inverted_index.use | 60 |
| abstract_inverted_index.(CC) | 52 |
| abstract_inverted_index.(R), | 152 |
| abstract_inverted_index.(and | 313 |
| abstract_inverted_index.0.05 | 216 |
| abstract_inverted_index.also | 175, 238 |
| abstract_inverted_index.area | 279 |
| abstract_inverted_index.does | 269 |
| abstract_inverted_index.each | 75 |
| abstract_inverted_index.form | 118 |
| abstract_inverted_index.from | 195, 215, 222, 231, 295 |
| abstract_inverted_index.good | 205 |
| abstract_inverted_index.have | 271 |
| abstract_inverted_index.link | 86 |
| abstract_inverted_index.made | 239 |
| abstract_inverted_index.mean | 155, 255, 282 |
| abstract_inverted_index.much | 272 |
| abstract_inverted_index.node | 81, 89 |
| abstract_inverted_index.pair | 90 |
| abstract_inverted_index.root | 154 |
| abstract_inverted_index.that | 186, 265 |
| abstract_inverted_index.this | 296 |
| abstract_inverted_index.time | 43, 316 |
| abstract_inverted_index.used | 110 |
| abstract_inverted_index.with | 180, 211, 276, 286 |
| abstract_inverted_index.0.799 | 196 |
| abstract_inverted_index.0.99, | 218 |
| abstract_inverted_index.0.99. | 234 |
| abstract_inverted_index.12.3, | 225 |
| abstract_inverted_index.NRMSE | 219 |
| abstract_inverted_index.area, | 254 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.daily | 131 |
| abstract_inverted_index.error | 157 |
| abstract_inverted_index.flow, | 256 |
| abstract_inverted_index.flow. | 292 |
| abstract_inverted_index.major | 33 |
| abstract_inverted_index.other | 314 |
| abstract_inverted_index.range | 194 |
| abstract_inverted_index.study | 17, 297 |
| abstract_inverted_index.three | 32, 147 |
| abstract_inverted_index.using | 41, 146 |
| abstract_inverted_index.water | 9 |
| abstract_inverted_index.(NSE). | 162 |
| abstract_inverted_index.0.999. | 198 |
| abstract_inverted_index.United | 139 |
| abstract_inverted_index.flow). | 261 |
| abstract_inverted_index.nodes. | 104 |
| abstract_inverted_index.number | 167 |
| abstract_inverted_index.reveal | 185 |
| abstract_inverted_index.search | 67 |
| abstract_inverted_index.square | 156 |
| abstract_inverted_index.steps: | 34 |
| abstract_inverted_index.values | 101, 108, 213, 220, 229 |
| abstract_inverted_index.yields | 203 |
| abstract_inverted_index.States. | 140 |
| abstract_inverted_index.attempt | 236 |
| abstract_inverted_index.between | 87, 98, 244 |
| abstract_inverted_index.complex | 20, 122, 305 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.current | 16 |
| abstract_inverted_index.employs | 18 |
| abstract_inverted_index.examine | 241 |
| abstract_inverted_index.nearest | 65 |
| abstract_inverted_index.network | 40, 55, 73 |
| abstract_inverted_index.ranging | 214, 221, 230 |
| abstract_inverted_index.results | 206, 263 |
| abstract_inverted_index.series. | 317 |
| abstract_inverted_index.series; | 44 |
| abstract_inverted_index.suggest | 264 |
| abstract_inverted_index.values, | 284 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.−0.89 | 232 |
| abstract_inverted_index.(NRMSE), | 158 |
| abstract_inverted_index.Overall, | 199 |
| abstract_inverted_index.accuracy | 143, 173, 246, 268 |
| abstract_inverted_index.approach | 22, 29, 124, 202 |
| abstract_inverted_index.concepts | 307 |
| abstract_inverted_index.consists | 30 |
| abstract_inverted_index.critical | 114, 182 |
| abstract_inverted_index.distance | 106, 115, 183 |
| abstract_inverted_index.drainage | 278 |
| abstract_inverted_index.identify | 112 |
| abstract_inverted_index.measure; | 56 |
| abstract_inverted_index.neighbor | 66 |
| abstract_inverted_index.network. | 120 |
| abstract_inverted_index.obtained | 179 |
| abstract_inverted_index.outcomes | 294 |
| abstract_inverted_index.reliable | 1 |
| abstract_inverted_index.results, | 178 |
| abstract_inverted_index.stations | 135, 193 |
| abstract_inverted_index.timestep | 76 |
| abstract_inverted_index.(drainage | 253 |
| abstract_inverted_index.Different | 105 |
| abstract_inverted_index.catchment | 249 |
| abstract_inverted_index.certainly | 299 |
| abstract_inverted_index.ecosystem | 13 |
| abstract_inverted_index.existence | 84 |
| abstract_inverted_index.formation | 37 |
| abstract_inverted_index.influence | 164 |
| abstract_inverted_index.measures: | 149 |
| abstract_inverted_index.neighbors | 169 |
| abstract_inverted_index.procedure | 68 |
| abstract_inverted_index.promising | 300 |
| abstract_inverted_index.regarding | 301 |
| abstract_inverted_index.stations, | 210 |
| abstract_inverted_index.threshold | 107, 116 |
| abstract_inverted_index.variation | 259, 290 |
| abstract_inverted_index.(distance) | 97 |
| abstract_inverted_index.clustering | 50, 63, 188 |
| abstract_inverted_index.considered | 78 |
| abstract_inverted_index.contiguous | 138 |
| abstract_inverted_index.difference | 96 |
| abstract_inverted_index.efficiency | 161 |
| abstract_inverted_index.identified | 92 |
| abstract_inverted_index.normalized | 153 |
| abstract_inverted_index.prediction | 2, 25, 129, 142, 172, 201, 245, 267, 310 |
| abstract_inverted_index.properties | 252 |
| abstract_inverted_index.quantified | 145 |
| abstract_inverted_index.reasonably | 204 |
| abstract_inverted_index.resources, | 10 |
| abstract_inverted_index.streamflow | 4, 42, 70, 100, 132, 283, 312 |
| abstract_inverted_index.threshold, | 184 |
| abstract_inverted_index.application | 303 |
| abstract_inverted_index.calculation | 47 |
| abstract_inverted_index.coefficient | 51, 151, 257, 288 |
| abstract_inverted_index.correlation | 150 |
| abstract_inverted_index.hydrologic) | 315 |
| abstract_inverted_index.implemented | 126 |
| abstract_inverted_index.prediction. | 71 |
| abstract_inverted_index.statistical | 148, 251 |
| abstract_inverted_index.streamflow. | 27 |
| abstract_inverted_index.coefficients | 189 |
| abstract_inverted_index.relationship | 243, 275 |
| abstract_inverted_index.applications. | 14 |
| abstract_inverted_index.construction, | 74 |
| abstract_inverted_index.investigated. | 176 |
| abstract_inverted_index.environmental, | 11 |
| abstract_inverted_index.networks-based | 21, 123, 306 |
| abstract_inverted_index.Nash–Sutcliffe | 160 |
| abstract_inverted_index.coefficient-based | 64 |
| abstract_inverted_index.characteristics/streamflow | 250 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5008084305 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I162827531 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8600000143051147 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.13128439 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |