Streamlining Systematic Reviews: A Novel Application of Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.15247
Systematic reviews (SRs) are essential for evidence-based guidelines but are often limited by the time-consuming nature of literature screening. We propose and evaluate an in-house system based on Large Language Models (LLMs) for automating both title/abstract and full-text screening, addressing a critical gap in the literature. Using a completed SR on Vitamin D and falls (14,439 articles), the LLM-based system employed prompt engineering for title/abstract screening and Retrieval-Augmented Generation (RAG) for full-text screening. The system achieved an article exclusion rate (AER) of 99.5%, specificity of 99.6%, a false negative rate (FNR) of 0%, and a negative predictive value (NPV) of 100%. After screening, only 78 articles required manual review, including all 20 identified by traditional methods, reducing manual screening time by 95.5%. For comparison, Rayyan, a commercial tool for title/abstract screening, achieved an AER of 72.1% and FNR of 5% when including articles Rayyan considered as undecided or likely to include. Lowering Rayyan's inclusion thresholds improved FNR to 0% but increased screening time. By addressing both screening phases, the LLM-based system significantly outperformed Rayyan and traditional methods, reducing total screening time to 25.5 hours while maintaining high accuracy. These findings highlight the transformative potential of LLMs in SR workflows by offering a scalable, efficient, and accurate solution, particularly for the full-text screening phase, which has lacked automation tools.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.15247
- https://arxiv.org/pdf/2412.15247
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405713874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405713874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.15247Digital Object Identifier
- Title
-
Streamlining Systematic Reviews: A Novel Application of Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-14Full publication date if available
- Authors
-
Fouad Trad, Ryan Yammine, Jana Charafeddine, Marlene Chakhtoura, Maya Rahme, Ghada El‐Hajj Fuleihan, Ali ChehabList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.15247Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.15247Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.15247Direct OA link when available
- Concepts
-
Computer science, Systematic review, Chemistry, MEDLINE, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405713874 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.15247 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.15247 |
| ids.openalex | https://openalex.org/W4405713874 |
| fwci | 0.0 |
| type | preprint |
| title | Streamlining Systematic Reviews: A Novel Application of Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13910 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.47049999237060547 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3300 |
| topics[0].subfield.display_name | General Social Sciences |
| topics[0].display_name | Computational and Text Analysis Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5212714672088623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C189708586 |
| concepts[1].level | 3 |
| concepts[1].score | 0.48064127564430237 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1504425 |
| concepts[1].display_name | Systematic review |
| concepts[2].id | https://openalex.org/C185592680 |
| concepts[2].level | 0 |
| concepts[2].score | 0.08996716141700745 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[2].display_name | Chemistry |
| concepts[3].id | https://openalex.org/C2779473830 |
| concepts[3].level | 2 |
| concepts[3].score | 0.05224794149398804 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1540899 |
| concepts[3].display_name | MEDLINE |
| concepts[4].id | https://openalex.org/C55493867 |
| concepts[4].level | 1 |
| concepts[4].score | 0.0 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[4].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5212714672088623 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/systematic-review |
| keywords[1].score | 0.48064127564430237 |
| keywords[1].display_name | Systematic review |
| keywords[2].id | https://openalex.org/keywords/chemistry |
| keywords[2].score | 0.08996716141700745 |
| keywords[2].display_name | Chemistry |
| keywords[3].id | https://openalex.org/keywords/medline |
| keywords[3].score | 0.05224794149398804 |
| keywords[3].display_name | MEDLINE |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.15247 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.15247 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.15247 |
| locations[1].id | doi:10.48550/arxiv.2412.15247 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.15247 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5086668805 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2241-8195 |
| authorships[0].author.display_name | Fouad Trad |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Trad, Fouad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018463301 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-9183-7395 |
| authorships[1].author.display_name | Ryan Yammine |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yammine, Ryan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5115615963 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jana Charafeddine |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Charafeddine, Jana |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073122583 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0012-986X |
| authorships[3].author.display_name | Marlene Chakhtoura |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chakhtoura, Marlene |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5014581406 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9467-5062 |
| authorships[4].author.display_name | Maya Rahme |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rahme, Maya |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083958215 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2076-5858 |
| authorships[5].author.display_name | Ghada El‐Hajj Fuleihan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fuleihan, Ghada El-Hajj |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5115615964 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ali Chehab |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Chehab, Ali |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.15247 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Streamlining Systematic Reviews: A Novel Application of Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13910 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.47049999237060547 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3300 |
| primary_topic.subfield.display_name | General Social Sciences |
| primary_topic.display_name | Computational and Text Analysis Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.15247 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.15247 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.15247 |
| primary_location.id | pmh:oai:arXiv.org:2412.15247 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.15247 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.15247 |
| publication_date | 2024-12-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.D | 52 |
| abstract_inverted_index.a | 40, 47, 86, 94, 125, 201 |
| abstract_inverted_index.0% | 158 |
| abstract_inverted_index.20 | 111 |
| abstract_inverted_index.5% | 139 |
| abstract_inverted_index.78 | 104 |
| abstract_inverted_index.By | 163 |
| abstract_inverted_index.SR | 49, 197 |
| abstract_inverted_index.We | 19 |
| abstract_inverted_index.an | 23, 76, 132 |
| abstract_inverted_index.as | 145 |
| abstract_inverted_index.by | 12, 113, 120, 199 |
| abstract_inverted_index.in | 43, 196 |
| abstract_inverted_index.of | 16, 81, 84, 91, 99, 134, 138, 194 |
| abstract_inverted_index.on | 27, 50 |
| abstract_inverted_index.or | 147 |
| abstract_inverted_index.to | 149, 157, 181 |
| abstract_inverted_index.0%, | 92 |
| abstract_inverted_index.AER | 133 |
| abstract_inverted_index.FNR | 137, 156 |
| abstract_inverted_index.For | 122 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.all | 110 |
| abstract_inverted_index.and | 21, 36, 53, 66, 93, 136, 174, 204 |
| abstract_inverted_index.are | 3, 9 |
| abstract_inverted_index.but | 8, 159 |
| abstract_inverted_index.for | 5, 32, 63, 70, 128, 208 |
| abstract_inverted_index.gap | 42 |
| abstract_inverted_index.has | 214 |
| abstract_inverted_index.the | 13, 44, 57, 168, 191, 209 |
| abstract_inverted_index.25.5 | 182 |
| abstract_inverted_index.LLMs | 195 |
| abstract_inverted_index.both | 34, 165 |
| abstract_inverted_index.high | 186 |
| abstract_inverted_index.only | 103 |
| abstract_inverted_index.rate | 79, 89 |
| abstract_inverted_index.time | 119, 180 |
| abstract_inverted_index.tool | 127 |
| abstract_inverted_index.when | 140 |
| abstract_inverted_index.(AER) | 80 |
| abstract_inverted_index.(FNR) | 90 |
| abstract_inverted_index.(NPV) | 98 |
| abstract_inverted_index.(RAG) | 69 |
| abstract_inverted_index.(SRs) | 2 |
| abstract_inverted_index.100%. | 100 |
| abstract_inverted_index.72.1% | 135 |
| abstract_inverted_index.After | 101 |
| abstract_inverted_index.Large | 28 |
| abstract_inverted_index.These | 188 |
| abstract_inverted_index.Using | 46 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.falls | 54 |
| abstract_inverted_index.false | 87 |
| abstract_inverted_index.hours | 183 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.time. | 162 |
| abstract_inverted_index.total | 178 |
| abstract_inverted_index.value | 97 |
| abstract_inverted_index.which | 213 |
| abstract_inverted_index.while | 184 |
| abstract_inverted_index.(LLMs) | 31 |
| abstract_inverted_index.95.5%. | 121 |
| abstract_inverted_index.99.5%, | 82 |
| abstract_inverted_index.99.6%, | 85 |
| abstract_inverted_index.Models | 30 |
| abstract_inverted_index.Rayyan | 143, 173 |
| abstract_inverted_index.lacked | 215 |
| abstract_inverted_index.likely | 148 |
| abstract_inverted_index.manual | 107, 117 |
| abstract_inverted_index.nature | 15 |
| abstract_inverted_index.phase, | 212 |
| abstract_inverted_index.prompt | 61 |
| abstract_inverted_index.system | 25, 59, 74, 170 |
| abstract_inverted_index.tools. | 217 |
| abstract_inverted_index.(14,439 | 55 |
| abstract_inverted_index.Rayyan, | 124 |
| abstract_inverted_index.Vitamin | 51 |
| abstract_inverted_index.article | 77 |
| abstract_inverted_index.limited | 11 |
| abstract_inverted_index.phases, | 167 |
| abstract_inverted_index.propose | 20 |
| abstract_inverted_index.review, | 108 |
| abstract_inverted_index.reviews | 1 |
| abstract_inverted_index.Language | 29 |
| abstract_inverted_index.Lowering | 151 |
| abstract_inverted_index.Rayyan's | 152 |
| abstract_inverted_index.accurate | 205 |
| abstract_inverted_index.achieved | 75, 131 |
| abstract_inverted_index.articles | 105, 142 |
| abstract_inverted_index.critical | 41 |
| abstract_inverted_index.employed | 60 |
| abstract_inverted_index.evaluate | 22 |
| abstract_inverted_index.findings | 189 |
| abstract_inverted_index.improved | 155 |
| abstract_inverted_index.in-house | 24 |
| abstract_inverted_index.include. | 150 |
| abstract_inverted_index.methods, | 115, 176 |
| abstract_inverted_index.negative | 88, 95 |
| abstract_inverted_index.offering | 200 |
| abstract_inverted_index.reducing | 116, 177 |
| abstract_inverted_index.required | 106 |
| abstract_inverted_index.LLM-based | 58, 169 |
| abstract_inverted_index.accuracy. | 187 |
| abstract_inverted_index.completed | 48 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.exclusion | 78 |
| abstract_inverted_index.full-text | 37, 71, 210 |
| abstract_inverted_index.highlight | 190 |
| abstract_inverted_index.including | 109, 141 |
| abstract_inverted_index.inclusion | 153 |
| abstract_inverted_index.increased | 160 |
| abstract_inverted_index.potential | 193 |
| abstract_inverted_index.scalable, | 202 |
| abstract_inverted_index.screening | 65, 118, 161, 166, 179, 211 |
| abstract_inverted_index.solution, | 206 |
| abstract_inverted_index.undecided | 146 |
| abstract_inverted_index.workflows | 198 |
| abstract_inverted_index.Generation | 68 |
| abstract_inverted_index.Systematic | 0 |
| abstract_inverted_index.addressing | 39, 164 |
| abstract_inverted_index.articles), | 56 |
| abstract_inverted_index.automating | 33 |
| abstract_inverted_index.automation | 216 |
| abstract_inverted_index.commercial | 126 |
| abstract_inverted_index.considered | 144 |
| abstract_inverted_index.efficient, | 203 |
| abstract_inverted_index.guidelines | 7 |
| abstract_inverted_index.identified | 112 |
| abstract_inverted_index.literature | 17 |
| abstract_inverted_index.predictive | 96 |
| abstract_inverted_index.screening, | 38, 102, 130 |
| abstract_inverted_index.screening. | 18, 72 |
| abstract_inverted_index.thresholds | 154 |
| abstract_inverted_index.comparison, | 123 |
| abstract_inverted_index.engineering | 62 |
| abstract_inverted_index.literature. | 45 |
| abstract_inverted_index.maintaining | 185 |
| abstract_inverted_index.specificity | 83 |
| abstract_inverted_index.traditional | 114, 175 |
| abstract_inverted_index.outperformed | 172 |
| abstract_inverted_index.particularly | 207 |
| abstract_inverted_index.significantly | 171 |
| abstract_inverted_index.evidence-based | 6 |
| abstract_inverted_index.time-consuming | 14 |
| abstract_inverted_index.title/abstract | 35, 64, 129 |
| abstract_inverted_index.transformative | 192 |
| abstract_inverted_index.Retrieval-Augmented | 67 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.46242106 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |